DDR是什么? DDR概述 (值得收藏)

电子技术设计 2025-06-26 16:30

图片无论对于芯片设计商还是器件制造商来说,DDR内存可谓是无处不在——除了在服务器、工作站和台式机中之外,还会内置在消费类电子产品、汽车和其他系统设计中。 每一代新的 DDR(双倍数据速率)SDRAM(同步动态随机内存)标准都会在许多方面带来显著改进,包括速度、尺寸和功率效率。 同样地,这些改进也会带来新的设计和测试挑战。

DDR是什么DDR概述

DDR SDRAM(Double Data Rate Synchronous Dynamic Random Access Memory,双数据率同步动态随机存储器),简称为DDR, 简单的说就是双倍传输速率的SDRAM。普通SDRAM内存的工作方式是在一个时钟周期的上升沿触发进行工作。也就是说在一个时钟周期内,内存将工作一次。

而DDR的技术使得内存可以在每一个时钟周期的上升沿和下降沿分别触发一次,这样就使得在一个时钟周期内内存可以工作两次,这样就使得DDR内存在相同的时间内能够完成普通内存一倍的工作量。(文末有DDR术语解釋)

DDR定义里的“同步”是什么意思?
“同步”是指内存工作需要同步时钟。DDR内部命令的发送与数据传输都以它为基准。

DDR存储器的身影现在到处可见 — 不仅在服务器、工作站和台式电脑中使用,还广泛嵌入在消费电子、汽车和其他系统设计中。每一代 DDR SDRAM(双倍数据速率同步动态随机存取存储器)的推出,都伴随着速度提升、封装尺寸减小,以及功耗降低(参见表 1)。这些功能特性方面的改进,也使得设计人员在降低设计裕量、提高信号完整性和互操作性方面面临更多的挑战。

表 1 JEDEC 定义了 DDR 规范

6/26日(周四)Keysight将举办超高速传输测试技术专场,有DDR5/LPDDR6 主题演讲,和8场技术分享与解析,涵盖高速计算PCIe 6.0/7.0接口、800G/1.6T超高速以太网等主题,还有线上抽奖!

欢迎扫码,免费报名参会

DDR接口

电子器件工程联合会(JEDEC)现已针对小功率DDR(LPDDR)或移动设备(移动DDR)推出了全新的 DDR标准。这个标准使用了更低的信号幅度,进一步改善了功耗情况。目前,该标准已经达到了 DDR1 的技术指标。工程师们将无需重新设计器件的链路层或协议层,便可享受功耗降低带来的种种优势,因为只需很少的投资便能调整系统的电压电平。

DDR接口可传输控制、地址、时钟、选通和数据信号。如图 1 所示,时钟、地址和控制信号从存储器控制器单向传输到 DDR芯片;选通和数据信号为双向传输。在读取操作中,选通和数据信号从DDR芯片传输到存储器控制器。在写入操作中,信号沿相反方向传输。

随着数据传输速率的增加和信号幅度的降低,为了提高信号性能,时钟和选通信号采用差分信号,这样可以消除共模噪声。其他信号仍然在单端模式下操作,更容易受到噪声、串扰和干扰的影响。

DDR接口

存储芯片分类

存储器基本分类

存储器主要分为只读存储器 ROM 和随机存取存储器 RAM (random access memory) 两大类

ROM:只读存储器 - ROM 所存数据,一般是装入整机前事先写好的,整机工作过程中只能读出,ROM所存数据稳定,断电后所存数据也不会改变。
RAM:随机存取存储器 (random access memory) - RAM 是与 CPU 直接交换数据的内部存储器,它可以随时读写,速度快,通常作为操作系统或其他正在运行中的程序的临时数据存储媒介,当电源关闭时 RAM 不能保留数据。
DDR SDRAM 在系统时钟的上升沿和下降沿都可以进行数据传输 - DDR SDRAM在 SDRAM 的基础上发展而来,这种改进型的 DRAM和 SDRAM 是基本一样的,不同之处在于它可以在一个时钟读写两次数据,这样就使得数据传输速度加倍了,也是目前电脑中用得最多的内存,而且具有成本优势。DDR 已经发展至今已经进化到 DDR5,与 DDR4相比,DDR5 在强大的封装中带来了全新的架构。

6/26日(周四)Keysight将举办超高速传输测试技术专场,有DDR5/LPDDR6 主题演讲,和8场技术分享与解析,涵盖高速计算PCIe 6.0/7.0接口、800G/1.6T超高速以太网等主题,还有线上抽奖!

欢迎扫码,免费报名参会

DDR5测试技术

SDRAM是什么内存条?

同步动态随机存取内存(synchronous dynamic random-access memory,简称SDRAM)是有一个同步接口动态随机存取内存DRAM)。通常DRAM是有一个异步接口的,这样它可以随时响应控制输入的变化。

而SDRAM有一个同步接口,在响应控制输入前会等待一个时钟信号,这样就能和计算机的系统总线同步。时钟被用来驱动一个有限状态机,对进入的指令进行管线操作。这使得SDRAM与没有同步接口的异步DRAM(asynchronous DRAM)相比,可以有一个更复杂的操作模式。

DRAM单元(cell)

DDR SDRAM,是一种双数据速率(DDR)同步动态随机存取存储器(SDRAM)。作为现代数字系统里最重要的核心部件之一,应用十分广泛。从消费类电子到商业工业类设备,从终端产品到数据中心,用于CPU进行数据处理运算的缓存。

近20多年来,经历了从SDRAM发展到DDR RAM,又从DDR发展到目前的DDR5,每一代 DDR 技术在带宽、性能和功耗等各个方面都实现了显著的进步,极大地推动了计算性能的提升。

二、 DDR标准发展和DDR5简介

图1展示的是RAM(Random Access Memory)20多年来的发展历程和信号特点。在SRAM时代,由于较低的信号速率,我们更多关心的是信号的扇出以及走线所带来的容性负载。

在DDR1/2/3时代,信号速率的不断提升,传统的使用集总参数方式来进行电路分析已越发显得不足,我们更关心的是信号的建立保持时间,以及信号线之间的延迟skew。

来到DDR4时代,有限带宽的PCB、连接器等传输通道,把原始信号里的高频分量削弱或者完全去掉,使得信号在时域波形上的表现为边沿变缓、出现振铃或者过冲。我们要像分析传统串行数据那样去更加关心数据的眼图,接收端模板和误码率。

随着AI、机器学习以及5G的发展,以往的DDR4技术,开始显得力不从心。如今DDR5的第5代高速I/O数据传输开始大规模走向市场化。

图1 DDR标准发展和信号特点演进

2.1 DDR5和DDR4性能差别 - DDR5的新特性

如下表所示,DDR5相比DDR4而言,带来了一系列关键的性能提升,同时也带来了新的设计挑战。

表1 DDR4和DDR5比较(源自Rambus)

2.1.1 速率的提升

近年来,内存与CPU性能发展之间的剪刀差越来越大,对内存带宽的需求日益迫切。DDR4在1.6GHz的时钟频率下最高可达 3.2 GT/s的传输速率,最初的 DDR5则将带宽提高了 50%,达到 4.8 GT/s传输速率。DDR5 内存的数据传输速率最终将会达到 8.4 GT/s。

2.1.2 电压的降低

降低工作电压(VDD),有助于抵消高速运行带来的功耗增加。在 DDR5 DRAM 中,寄存时钟驱动器 (RCD) 电压从 1.2 V 降至 1.1 V。命令/地址 (CA) 信号从 SSTL 变为 PODL,其优点是当引脚处于高电平状态时不会消耗静态功率。

6/26日(周四)Keysight将举办超高速传输测试技术专场,有DDR5/LPDDR6 主题演讲,和8场技术分享与解析,涵盖高速计算PCIe 6.0/7.0接口、800G/1.6T超高速以太网等主题,还有线上抽奖!

欢迎扫码,免费报名参会

2.1.3 DIMM 新电源架构

DIMM是什么?

DIMM全称Dual-Inline-Memory-Modules,中文名叫双列直插式存储模块,是指奔腾CPU推出后出现的新型内存条,它提供了64位的数据通道。

DDR5改善了DIMM的工作电压,将供电电压从DDR4的1.2V降至1.1V,从而进一步提升了内存的能效。

使用 DDR5 DIMM 时,电源管理将从主板转移到 DIMM 本身。DDR5 DIMM 将在 DIMM 上安装一个 12 V 电源管理集成电路(PMIC),使系统电源负载的颗粒度更细。PMIC 分配1.1 V VDD 电源,通过更好地在 DIMM 上控制电源,有助于改善信号完整性和噪音。

2.1.4 DIMM通道架构

DDR4 DIMM 具有 72 位总线,由 64 个数据位和 8 个 ECC 位组成。在 DDR5 中,每个 DIMM 都有两个通道。每个通道宽 40 位,32 个数据位和 8 个 ECC 位。虽然数据宽度相同(共 64 位),但两个较小的独立通道提高了内存访问效率。因此,使用 DDR5 不仅能提高速度,还能通过更高的效率放大更高的传输速率。

2.1.5 更长的突发长度

DDR4 的突发长度为4或者8。对于 DDR5,突发长度将扩展到8和16,以增加突发有效载荷。突发长度为16(BL16),允许单个突发访问 64 字节的数据,这是典型的 CPU 高速缓存行大小。它只需使用两个独立通道中的一个通道即可实现这一功能。这极大地提高了并发性,并且通过两个通道提高了内存效率。

2.1.6 更大容量的 DRAM

DDR4 在单芯片封装(SDP)中的最大容量为16 Gb DRAM。而DDR5的单芯片封装最大容量可达64 Gb,组建的DIMM 容量则翻了两番,达到惊人的 256 GB。

2.2 DDR5 设计面临的挑战

2.2.1 采用分离式全速率时钟,对应6400M T/s频率的时钟速率高达3.2GHz(未来会支持到8400M T/s)。

DDR5 DQS控制DQ读写时序

时钟控制命令信号,选通信号控制数据。对时钟信号抖动的要求更加严格,对各种命令信号与数据和地址信号的时序要求也更高。

2.2.2 双向复用的数据总线,读写数据分时复用链路。

由于有限的链路通道和布板空间等资源读写操作继续采用共享总线,因此需要分时操作。从验证测试角度来看也需要分别对读和写信号进行分离以检查其是否满足规范。

DDR5读写共享总线

2.2.3 突发DQS和DQ信号在更高速率的背景下在有限带宽的链路传输时带来更多ISI效应问题。

在DQS读写前导位,突发的第一个bit等等均有不同的效应和表现。此外考虑到存储电路在设计上不同于串行电路存在较多的阻抗不匹配,因此反射问题或干扰带来的ISI也会更严重。

DDR5在接收端采用更多的类似高速串行总线的信号处理

因此在接收侧速率大于3600MT/s时采用类似高速串行电路和标准总线中已经成熟的DFE均衡技术,可变增益放大(VGA)则通过MR寄存器配置,以补偿在更高速率传输时链路上的损耗。

DDR4标准采用的CTLE作为常用的线性均衡放大,虽然简单易实现但是其放大噪声的副产品也更为常见,考虑到DDR5总线里的反射噪声比没有采用。另外考虑到并行总线的串扰和反射等各信号抖动的定义和分析也会随之变化。

从测试角度来看,示波器是无法得到TP2点即均衡后的信号的,而仅能得到TP1点的信号,然后通过集成在示波器上的分析软件里的均衡算法对信号进行均衡处理以得到张开的眼图。眼图分析的参考时钟则来自基于时钟信号的DQS信号。另外眼图测试也从以往仅对DQ进行扩展到包括CMD/ADDR总线。

6/26日(周四)Keysight将举办超高速传输测试技术专场,有DDR5/LPDDR6 主题演讲,和8场技术分享与解析,涵盖高速计算PCIe 6.0/7.0接口、800G/1.6T超高速以太网等主题,还有线上抽奖!

欢迎扫码,免费报名参会

三、 DDR5测试新方法

3.1 发送端TX测试挑战

3.1.1 读写分离

由于规范规定DDR5,不再像传统的DDR一样,读写在pin脚处有严格的相位差别。所以使用DQS-DQ 相位差和前置信号模式的传统方法可能不再适用,需要采用新方法进行读写数据分离。根据真值表可以看出,CA4在读写操作过程中有不同的逻辑电平,所以可以根据CA4的状态来结合读写延迟来进行读写分离。

3.1.2 新增的测试参数

由于速率的提高,可能需要新的测试参数来鉴定关键信号。抖动成为关键信号的重要组成部分。规范定义了全新的UI抖动定义。

以及针对该UI的测量算法。

UI的测量项将覆盖CLK(input)、DQS(tx)和DQ(tx) 信号,且要求非常严格。

根据下表的计算,按照DDR5 4800的速率为例,要求测量出来的Rj最大值为0.0037UI,也就是769.6fs。

如此高要求的测量结果,也对仪表本身的性能提出了非常高的要求。仪表的抖动测量本底计算公式如下,可以看出示波器的本底噪声以及本底抖动,对抖动测量起了非常大的影响。

是德科技UXR旗舰级实时示波器,具有25fs的极低本底抖动,165μV(rms)(16G带宽下) 的本底噪声。可以提供可靠的DDR5的相关抖动测试。

3.1.3 测试方法

DDR的TX测量手法,一直是我们所关心的内容。在DDR4以前,规范规定的测试点,均在DRAM的ball处。DDR5里,除了眼图测试以外,其他测试点没有做额外更新。

我们推荐使用interposer的方式来进行测量,如下图所示。

测量完成后,通过S参数的数学计算,实现从实测点到理论测试点的波形转换。

而针对于DDR5的眼图测试,如果打开了DFE功能,示波器可以在去嵌的基础上,进一步完成均衡的操作,最后得到需要的波形。

当然,是德科技已经提供自动化的测试App,方便的给用户提供可视化的一键测试方案。

6/26日(周四)Keysight将举办超高速传输测试技术专场,有DDR5/LPDDR6 主题演讲,和8场技术分享与解析,涵盖高速计算PCIe 6.0/7.0接口、800G/1.6T超高速以太网等主题,还有线上抽奖!

欢迎扫码,免费报名参会

3.1.4 控制器测试新场景

由于信号速率的不断提升,控制器、链路、芯片,纷纷加入了测试大军。下图展示了针对于控制器、PCB互联链路的TX测试场景,通过示波器,配合夹具的使用,来实现发送端的信号质量测试。

3.2 接收端RX测试挑战

3.2.1 接收端新技术以往的高速串行链路设计中,我们知道随着速率的不断提升,链路的损耗,以及ISI,对高频分量的影响越来越大,所以在PCIE Gen3的时候,引入了接收端均衡的概念,用于弥补高频分量的损失。

具体来看,有下面几点。

  1. 是接收端的信号会先经过CTLE(连续时间线性均衡)均衡,图上展示的是具有7个DC gain的CTLE曲线。然后信号会一分为二,一部分给到CDR②,CDR中的核心PLL的OJTF函数是一个类似左边的高通滤波器。信号的另一部分信号会给到
  2. 具有一个tap的DFE(判决反馈均衡)。我们特别注意一下图里标识的2个测试点,一个是TP2,一个是TP2`。通常TP2是使用示波器真实捕获到的信号,而TP2`则是使用标准的参考接收机模型,来去复原芯片真实看到的波形。那这种均衡技术对DDR5是否有参考借鉴的意义呢?

首先看一下DDR5相对于传统serdes技术有什么特殊的地方。

a)全速率时钟 - 接收端没有PLL

b)单端信号 - 数量众多,不仅要考虑损耗带来的影响,更多的还需要考虑串扰带来的影响

c)分布式 - 多颗粒应用场景,每片颗粒独立的训练和均衡了解了DDR5和传统Serdes的几个特别之处外,参考在PCIE上使用的均衡技术,进行了部分调整后如下。

首先是CDR,由于系统里有了显示时钟,可以使用不具有频率跟踪能力的DLL模块,来代替原先复杂的CDR模块。

第二个是CTLE,虽然CTLE实现简单,但是考虑到单端的DDR5总线里的反射和串扰等,对信噪比恶化严重,所以使用了VGA可变增益放大器来代替CTLE。

第三个是借鉴了成熟的DFE均衡技术。最后一个,沿用了DDR以往的write leveling和read leveling机制。把原先在接收端实现的去加重功能放在了控制器端来实现。

3.2.2 接收端测试的新挑战

传统的Serdes接收端测试(以PCIe为例),目的是确定DUT能否在芯片封装的ball处(或者CEM规范的金手指处)可靠接收带有指定受损的信号,达到要求的误码率要求。针对DDR的单端并行总线系统,非相关抖动、电平干扰、ISI、串扰、反射,对于系统的可靠运行至关重要。DDR5的接收端测试,不仅包括了压力眼测试,也就是在给定的压力眼信号下,达到特定的误码率要求,还包括了幅度电压方面和水平抖动方面的灵敏度测试。

而被测DUT,可以是控制器、DRAM、缓冲器/寄存器、DIMM 等。

3.2.3 接收端测试的新方法规范定义了接收端测试里的所有测试点要求,以及波形在均衡器之后的指标要求。测试前,需要按照规范的要求进行校准。

校准之前,考虑到DDR总线的特殊性。ODT 会用于优化发送端到接收端的信号质量,由于其允许不同的阻抗设置,接收端测试过程中,建议使用 48 欧姆进行校准,以尽量减少与标准测试设备之间的不匹配。在此假设下,通过电平和抖动的 BERT 设置来调整信号的形状,实现压力信号的产生。

6/26日(周四)Keysight将举办超高速传输测试技术专场,有DDR5/LPDDR6 主题演讲,和8场技术分享与解析,涵盖高速计算PCIe 6.0/7.0接口、800G/1.6T超高速以太网等主题,还有线上抽奖!

欢迎扫码,免费报名参会

是德科技提供以M8000系列误码仪为基础的DDR5接收端测试方案,支持控制器、DRAM、缓冲器/寄存器、DIMM的测试。

3.2.4 接收端测试的校准

下图是DDR在系统产品中实际应用的拓扑结构。依次从DDR控制器,经过PCB路径,来到DIMM上的DRAM颗粒。

做校准的时候,也是参考上图的拓扑来完成整个路径的模拟。针对DIMM或者颗粒而言,信号由BERT发出,经过CTC2 Board和replicate card,最终由示波器接收,组成完整的端到端链路。

这里要特别说明的是,针对不同的产品测试,有对应的夹具来进行配合。主要的夹具有如下几种。分别是下图中的C2C test card,System Motherboard Test Fixture,Device Validation Fixture。

其中,CTC2 test card提供DIMM插座,同时将DIMM上所有信号包括CA/CMD、DQS,DQ通过SMP连接器的形式引出。用于DIMM、RCD测试夹具、Data Buffer测试夹具、DRAM测试夹具等的校准和测试。

CTC2 test card

System Motherboard Test Fixture也同样把CA/CMD、DQS,DQ的信号通过SMP的方式引出,用于控制器的发送端测试,以及控制器的接收端测试校准和测试,同时还支持系统主板的通道特性验证。

System Motherboard Test FixtureDevice Validation Fixture包括了RCD的测试夹具,Data Buffer的测试夹具,DRAM的测试夹具,以及Combo测试夹具等。主要用于单个器件产品的校准与测试,以及多器件的校准与测试。测试时插在CTC2的test card上。

Device Validation Fixture下图展示的是基于CTC2 test card进行的校准操作。连接方式如图所示。

使用M80885RCA自动化软件,根据向导,完成测试环境参数的setup,并对DUT进行初始化。

一步一步,实现DQS&DQ和CK&CA的各参数自动化校准。完成自动化校准后,可以查看每个校准项目的测试结果,如下图所示。

3.2.5 接收端测试

接收端测试包括两大部分测试内容,Sensitivity测试和Stressed Eye测试。其中Sensitivity测试又包含Voltage Sensitivity和Jitter Sensitivity。DQS和DQ的Voltage Sensitivity测试中,测试DQS的时候保持DQ的信号不变,测试DQ的时候保持DQS的信号不变。不断调整另外一个参数的变量,遍历整个参数的范围后,统计误码率。

DQS的Jitter Sensitivity测试中,首先输出clean的clk和dq。在此基础上,遍历DQS和DQ的相位,计算出本底jitter的Sensitivity测试。然后依次改变DCD和Rj以及DCD和Rj的组合,遍历DQS和DQ的相位,完成各种场景下的jitter Sensitivity测试。

Stressed Eye测试中,使用校准过程中的压力信号(如下图),来进行环回误码率测试。

测试完成后,M80885一致性软件会给出上图右侧的测试结果与测试报告。

6/26日(周四)Keysight将举办超高速传输测试技术专场,有DDR5/LPDDR6 主题演讲,和8场技术分享与解析,涵盖高速计算PCIe 6.0/7.0接口、800G/1.6T超高速以太网等主题,还有线上抽奖!

欢迎扫码,免费报名参会

四、 DDR、LPDDR的协议解码测试总结

是德科技可以给大家带来完整的端到端解决方案。包括设计前期的仿真,涵盖了memory designer的建模和ADS的前后仿真。发送端测试中,我们提供业内旗舰级性能指标的UXR实时示波器和高性能的RC模型探头,有效降低测试负载。

接收端测试中,我们提供all-in-box的M8000系列误码仪,支持控制器、DRAM、Data Buffer、RCD、DIMM的接收端校准与测试。协议分析仪方面,U4164A系列,支持完整的DDR、LPDDR的协议解码测试。

LPDDR4 是 DDR4 内存的移动版本。 是德科技逻辑分析仪是验证 DDR4 和 LPDDR4 内存设计的最有效设备。

DDR术语

DDR - Double Data Rate 双倍速率

SDRAM - Synchronous Dynamic Random Access Memory的缩写,即同步动态随机存取存储器

DDR SDRAM - Double Data Rate SDRAM的缩写,是双倍速率同步动态随机存储器的意思。

Channel - 简单理解一个通道对应一个DDR控制器,每个通道拥有一组地址线、控制线和数据线

DIMM - DIMM全称Dual-Inline-Memory-Modules,中文名叫双列直插式存储模块,是指奔腾CPU推出后出现的新型内存条,它提供了64位的数据通道。是主板上的一个内存插槽,一个channel可以包含多个DIMM。

Rank - 一组可以被一个内存通道同时访问的芯片组合称作一个rank,一个rank中的每个芯片都共用内存通道提供的地址线、控制线和数据线,同时每个芯片都提供一组输出线,这些输出线组合起来就是内存条的输出线。简单来说rank是一组内存芯片集合,当芯片位宽*芯片数=64bit(内存总位宽)时,这些芯片组成一个Rank,存储64bit的数据。

一般每个芯片位宽是8bit,然后内存条每面8个芯片,那么每面就构成了一个Rank,这两面的Rank通过一根地址线来区分当前要访问的是哪一面。同一个Rank中所有的芯片协作来读取一个地址(1个Rank,8个芯片*8bit=64bit),这个地址的不同bit,每8个一组分散在这个Rank上的不同芯片上。设计Rank的原因是为了减少每个芯片的位宽(在CPU总位宽确定的前提下,比如64bit),降低复杂度。

Chip - 是内存条上的一个芯片,由多个bank组成,大多数是4bit/8bit/16bit,多个chip做成一个rank,配合完成一次访问的位宽。

Bank - 是一个逻辑上的概念。一个bank可以分散到多个chip上,一个chip也可以包含多个bank。DDR4以前是没有Bank Group的,所以该值就表示整个颗粒中Bank数量。但是在DDR4和DDR5中,就表示每个Bank Group中Bank的数量,整个颗粒Bank数量 = Bank Group * Bank。

8阵列bank

Row、Column组成的memory array - 可以简单的理解bank为一个二维bit类型的数组。每个bank对应一个bit,8个bank组成8bit的数据。

Voltage(VDDQ)- 存储芯片(颗粒)的输出缓冲供电电压。

Device Width - 颗粒位宽,常见为4/8/16bit。一个Memory Array中由行地址和列地址的交叉选中一个位,若2个Array叠加在一起,就同时选中了2个Bit,位宽是X2。若4个Array叠加到一起,就能够同时选中4个Bit,位宽则是X4。也就是说,对一个X4位宽的DDR 颗粒,如果给出行地址和列地址,就会同时输出4个Bit到DQ(数据输入、输出:双向数据总线)数据线上。

Die Density - 颗粒密度,也就是容量,随着DDR迭代,容量越来越大。

Data rates - MT/s指每秒传输多少个数据(Mega-transfer per second),和时钟频率是两个不同的概念。DDR(dual data rate)是双边沿传输数据。因此MT/s是IO时钟频率的两倍。

Prefetch - 在一个时钟周期中,同时将相邻列地址的数据一起取出来,并行取出DRAM数据,再由列地址0/1/2(DDR1使用列0,DDR2使用列0和列1,DDR3/DDR4使用列0,1和2)选择输出。2n/4n/8n。这里的数字指的就是并行取出的位数。这里的n,就是DQ位宽,即上面的device width(x4/x8/x16)。所以DDR3 16bit SDRAM内存颗粒,16bit指的是位宽,其一次读写访问的数据量是8*16=128bit

Bank Group - Bank分组数量,该特性只存在于DDR4和DDR5中

Burst Length - 指突发长度,突发是指在同一行中相邻的存储单元连续进行数据传输的方式,连续传输所涉及到存储单元(列)的数量就是突发长度,在DDR SDRAM中指连续传输的周期数。一般对应预取bit数目。

Core frequency - 颗粒核心频率,即内存cell阵列的工作频率,它读取数据到IO Buffer的频率。它是内存频率的基础,其他频率都是在该频率的基础上得出来的。

IO clk Frequency - 内存的数据传输速率。它和内存的prefetch有关。对于DDR,一个时钟周期的上升沿和下降沿都在传输数据,即一个时钟周期传输2bit的数据,所以DDR的prefetch为2bit。对于DDR2,IO时钟频率是其核心频率的两倍,同时也是双沿传输数据,因此DDR2的prefetch为2×2bit=4bit。对于DDR3,IO时钟频率是其核心频率的四倍,同时也是双沿传输数据,因此DDR3的prefetch为4×2bit=8bit。

Arbitration CMD priority - 仲裁器,仲裁CMD的优先级。会对来自各端口的请求进行仲裁,并将请求发送给控制器,仲裁其从端口收到的每个事务,每个事务都有一个相对应的优先级。端口仲裁逻辑会根据优先级进行处理,从而确定如何向控制器发出请求。以Cadence Denali内存控制器为例,它有几种仲裁策略:

Round Robin - 每个端口对应一个独立的计数器,当端口上有请求被接受的时候,计数器就会增加,然后仲裁器会针对计数器非0的端口的请求进行轮流仲裁,每仲裁执行一次,相应端口的计数器减一,直到端口接受请求计数器变为0。

带宽分配/优先级轮流操作 - 结合轮流操作、优先级、带宽和端口带宽保持等,根据用户分配的命令优先级,将传入的命令按优先级分组。在每个优先级组内,仲裁器评估请求的端口、命令队列和请求的优先级,从而确定优先级。当控制器繁忙时,超过其带宽分配的端口,可能会接受较低的优先级服务。

加权优先级循环 - 是一种面向服务质量的算法,结合了循环操作、优先级、相对优先级、端口排序的功能。根据命令的优先级或该类型命令的相关端口的优先级,将传入的命令分成优先级组。具有较高权重的端口可能会更频繁的接受仲裁,从而更容易被运行到

DDR SDRAM Control - DDR SDRAM的控制。包含了一个命令队列,接受来自仲裁器的命令。该命令队列使用一个重排算法来决定命令的放置顺序。重排逻辑遵循一些规则,通过考虑地址碰撞、源碰撞、数据碰撞、命令类型和优先级,来确定命令插入到命令队列的位置。重排逻辑还通过命令分组和bank分割,来提高控制器的效率。

当命令进入命令队列后,选择逻辑扫描命令队列中的命令进行运行。若较高优先级的命令还没有准备好运行,较低优先级的命令不与命令队列中排在前面的命令冲突,那么这个较低优先级的命令,可以先于该没准备好的高优先级命令运行。

此外,控制器还包含一个仲裁块,支持软件可编程接口、外部引脚及计数器的低功耗控制。另外,控制器支持调频功能,用户可以通过操作寄存器组,调整ddr的工作频率。

Transaction Processing - 事务处理用于处理命令队列中的命令。该逻辑会重排命令,使DRAM的读写带宽吞吐最大化。

D9150LDDC LPDDR5 一致性测试应用软件能够轻松快速地测试、调试和表征您的LPDDR5 设计。D9150LDDC 使您能够使用示波器对 LPDDR5 设计进行自动化测试和裕量分析。

D9030DDRC DDR3 和 LPDDR3 合规性测试软件能够轻松快速地测试、调试和表征您的 DDR3 设计。 以如此高的速度传输数据时,信号完整性是确保可靠性和互操作性能的关键。

6/26日(周四)Keysight将举办超高速传输测试技术专场,有DDR5/LPDDR6 主题演讲,和8场技术分享与解析,涵盖高速计算PCIe 6.0/7.0接口、800G/1.6T超高速以太网等主题,还有线上抽奖!

👇👇点击阅读原文,也可一键报名

声明:内容取材于网络,仅代表作者观点,如有内容违规问题,请联系处理。 
Copyright © 2025 成都区角科技有限公司
蜀ICP备2025143415号-1
  
川公网安备51015602001305号