【AI】谷歌大脑之父首次坦白!茶水间闲聊引爆万亿帝国,AI自我突破触及门槛

人工智能产业链union 2025-08-30 08:00

资讯配图
资讯配图

【导读】刚刚,AI界传奇Jeff Dean深度访谈重磅放出!作为谷歌大脑奠基人、TensorFlow与TPU背后的关键推手,他亲述了这场神经网络革命的非凡历程。

刚刚,「现代互联网架构之父」Jeff Dean最新对谈流出。

这位AI领域的传奇,是Google Brain的奠基者,也是推动神经网络走向规模化的关键人物。

从让神经网络「看懂猫」的重大突破,到TensorFlow与TPU的诞生,他的故事几乎是一部AI发展史。

最新一期「登月播客」(The Moonshot podcast)深度访谈中Jeff Dean回顾了个人成长经历、Google Brain的早期故事,以及他对AI未来的思考

资讯配图

节目中,他揭秘了他本人所知的一些细节和趣事:

· 小时候,Jeff Dean打印了400页源码自学。

· 90年代,他提出「数据并行/模型并行」概念时,还没这些术语。

· Google Brain的最初灵感,竟然是在谷歌的微型茶水间与吴恩达的一次闲聊中诞生。

· 「平均猫」图像的诞生,被Jeff比作「在大脑里找到了触发祖母记忆的神经元」。

· 他把AI模型比作「苏格拉底式伙伴」,能陪伴推理、辩论,而不是单向工具。

· 对未来的隐喻:「一亿老师,一个学生」,人类不断教AI模型,所有人都能受益。


资讯配图
超级工程师,早已看好神经网络


Jeff是工程超级英雄口中的「工程超级英雄」,很少有人像Jeff Dean这样的单个工程师,赢得人们如此多的仰慕。

资讯配图

主持人的第一个问题是:Jeff  Dean是如何成为工程师的?

Jeff Dean认为他有一个不同寻常的童年。因为经常搬家,在12年里他换了11所学校。

在很小的时候,他喜欢用乐高积木搭建东西,每次搬家总要带上他的乐高套装。

当九岁的时候,他住在夏威夷。

Jeff的父亲是一名医生,但他总是对计算机如何用于改善公共卫生感兴趣。当时如果想用计算机,他只能去健康部门地下室的机房,把需求交给所谓的「主机大神」,然后等他们帮你实现,速度非常慢。

资讯配图

在杂志上,Jeff的爸爸看到一则广告,买下了DIY计算机套件。那是一台Intel 8080的早期机型(大概比Apple II还要早一两年)。

资讯配图

最初,这台电脑就是一个闪烁灯和开关的盒子,后来他们给它加了键盘,可以一次输入多个比特。再后来,他们安装了一个BASIC解释器。Jeff Dean买了一本《101个BASIC语言小游戏》的书,可以把程序一行一行敲进去,然后玩,还能自己修改。

这就是他第一次接触编程。

后来,Jeff一家搬到明尼苏达州。全州的中学和高中都能接入同一个计算机系统,上面有聊天室,还有交互式冒险游戏。

这就像「互联网的前身」,比互联网普及早了15~20年。

当时,Jeff大概13、14岁,他在玩儿的一款多人在线的游戏源码开源了。

Jeff偷偷用了一台激光打印机,把400页源代码全都打印了出来,想把这款多人主机游戏移植到UCSD Pascal系统上。

这个过程让他学到了很多关于并发编程的知识。

这是Jeff Dean第一次编写出并不简单的软件。

大概是91年,人工智能第一次抓住了Jeff Dean想象力。

具体而言,是使用lisp代码进行遗传编程。

而在明尼苏达大学本科的最后一年,Jeff Dean第一次真正接触了人工智能。

当时,他上了一门并行与分布式编程课,其中讲到神经网络,因为它们本质上非常适合并行计算。

资讯配图

那是1990年,当时神经网络刚好有一波热潮。它们能解决一些传统方法搞不定的小问题。

当时「三层神经网络」就算是「深度」了,而现在有上百层。

他尝试用并行的方法来训练更大的神经网络,把32个处理器连在一起。但后来发现,需要的算力是100万倍,32个远远不够

资讯配图

论文链接:https://drive.google.com/file/d/1I1fs4sczbCaACzA9XwxR3DiuXVtqmejL/view

虽然实验规模有限,但这就是他和神经网络的第一次深度接触,让他觉得这条路很对。

即便到了90年代末,神经网络在AI领域已经完全「过时」了。之后,很多人放弃了「神经网络」研究。

但Jeff Dean并没有完全放弃。当时整个AI领域都转移了关注点,他就去尝试别的事情了。

毕业后,他加入了Digital Equipment Corporation在Palo Alto的研究实验室。

资讯配图

数字设备公司Digital Equipment Corporation,简称DEC,商标迪吉多Digital,是成立于1957年的一家美国电脑公司,发明了PDP系列迷你计算机、Alpha微处理器,后于1998年被康柏电脑收购

后来,他加入谷歌,多次在不同领域「从头再来」:

搜索与信息检索系统、大规模存储系统(Bigtable、Spanner)、机器学习医疗应用,最后才进入Google Brain。



资讯配图
谷歌大脑秘辛:一次茶水间闲聊


在职业生涯里,Jeff Dean最特别的一点是:一次又一次地「从零开始」。

这种做法激励了很多工程师,证明了「影响力」不等于「手下的人数」,而是推动事情发生的能力。

就像把雪球推到山坡上,让它滚得足够快、足够大,然后再去找下一个雪球。Jeff Dean喜欢这种方式。

资讯配图

然后在Spanner项目逐渐稳定后,他开始寻找下一个挑战,遇到了吴恩达。

资讯配图

在谷歌的茶水间偶然碰面,吴恩达告诉Jeff Dean:「在语音和视觉上,斯坦福的学生用神经网络得到了很有前景的结果。」

Jeff一听就来了兴趣,说:「我喜欢神经网络,我们来训练超大规模的吧。」

这就是Google Brain的开端,他们想看看是否能够真正扩大神经网络,因为使用GPU训练神经网络,已经取得良好的结果。

Jeff Dean决定建立分布式神经网络训练系统,从而训练非常大的网络。最后,谷歌使用了2000台计算机,16000个核心,然后说看看到底能训练什么。

渐渐地,越来越多的人开始参与这个项目。

谷歌在视觉任务训练了大型无监督模型,为语音训练了大量的监督模型,与搜索和广告等谷歌部门合作做了很多事情。

资讯配图

最终,有了数百个团队使用基于早期框架的神经网络。

纽约时报报道了这一成就,刊登了那只猫的照片,有点像谷歌大脑的「啊哈时刻」。

资讯配图

因为他们使用的是无监督算法。

他们把特定神经元真正兴奋的东西平均起来,创造最有吸引力的输入模式。这就是创造这只猫形象的经过,称之为「平均猫」。

在Imagenet数据集,谷歌微调了这个无监督模型,在Imagenet 20000个类别上获得了60%的相对错误率降低(relative error rate reduction)。

同时,他们使用监督训练模型,在800台机器上训练五天,基本上降低了语音系统30%的错误率。这一改进相当于过去20年的语音研究的全部进展。

因此,谷歌决定用神经网络进行早期声学建模。这也是谷歌定制机器学习硬件TPU的起源。

注意力机制三部曲

之后不久,谷歌大脑团队取得了更大的突破,就是注意力机制(attention)。

Jeff Dean认为有三个突破。

第一个是在理解语言方面,词或短语的分布式表示(distributed representation)。

这样不像用字符「New York City」来表示纽约市,取而代之的是高维空间中的向量。

纽约市倾向于出现的固有含义和上下文,所以可能会有一个一千维的向量来表示它,另一个一千维的向量来表示番茄(Tomato)。

而实现的算法非常简单,叫做word2vec(词向量),基本上可以基于试图预测附近的词是什么来训练这些向量。

资讯配图

论文链接:https://arxiv.org/abs/1301.3781

接下来,Oriol Vinyals, Ilya Sutskever和Quoc Le开发了一个叫做序列到序列(sequence to sequence)的模型,它使用LSTM(长短期记忆网络)。

资讯配图

论文链接:https://arxiv.org/abs/1409.3215

LSTM有点像是一个以向量作为状态的东西,然后它处理一堆词或标记(tokens),每次它稍微更新它的状态。所以它可以沿着一个序列扫描,并在一个基于向量的表示中记住它看到的所有东西。

它是系统运行基础上的短期记忆。

结果证明这是建模机器翻译的一个非常好的方法。

最后,才是注意力机制,由Noam Shazeer等八人在Transformer中提出的注意力机制。

资讯配图

这个机制的想法是,与其试图在每个单词处更新单个向量,不如记住所有的向量。

资讯配图

所以,注意力机制是这篇非常开创性的论文的名字,他们在其中开发了这种基于transformer的注意力机制,这个机制在序列长度上是n平方的,但产生了惊人的结果。


资讯配图
LLM突破触及门槛,自动化闭环颠覆人类


一直以来,LLM神经网络运作机制很难被人理解,成为一个无法破译的「黑箱」。

而如今,随着参数规模越来越庞大,人们无法像理解代码一样去理解LLM。

研究人员更像是在做「神经科学」研究:观察数字大脑的运作方式,然后试着推理背后的机制。

资讯配图

人类理解模型的想法,未来会怎么发展?

Jeff Dean对此表示,研究这一领域的人,把它称之为「可解释性」。所谓可解释性,就是能不能搞清楚LLM到底在做什么,以及它为什么会这么做?

这确实有点像「神经科学」,但相较于研究人类神经元,LLM毕竟是数字化产物,相对来说探测比较容易。

很多时候,人们会尝试做一些直观的可视化,比如展示一个70层模型里,第17层在某个输入下的情况。

这当然有用,但它还是一种比较静态的视角。

他认为,可解释性未来可能的发展一个方向——如果人类想知道LLM为何做了某种决定,直接问它,然后模型会给出回答。

主持人表示,自己也不喜欢AGI术语,若是不提及这一概念,在某个时候,计算机会比人类取得更快的突破。

未来,我们需要更多的技术突破,还是只需要几年的时间和几十倍的算力?


Jeff Dean表示,自己避开AGI不谈的原因,是因为许多人对它的定义完全不同,并且问题的难度相差数万亿倍。

就比如,LLM在大多数任务上,要比普通人的表现更强。

要知道,当前在非物理任务上,它们已经达到了这个水平,因为大多数人并不擅长,自己以前从未做过的随机任务。在某些任务中,LLM还未达到人类专家的水平。

不过,他坚定地表示,「在某些特定领域,LLM自我突破已经触及门槛」。

资讯配图

前提是,它能够形成一个完全自动化闭环——自动生成想法、进行测试、获取反馈以验证想法的有效性,并且能庞大的解决方案空间中进行探索。

Jeff Dean还特别提到,强化学习算法和大规模计算搜索,已证明在这种环境中极其有效。

在众多科学、工程等领域,自动化搜索与计算能力必将加速发展进程。

这对于未来5年、10年,甚至15-20年内,人类能力的提升至关重要。

资讯配图

未来五年规划


当问及未来五年个人规划时,Jeff Dean称,自己会多花些时间去思考,打造出更加强大、更具成本效益的模型,最终部署后服务数十亿人。

众所周知,谷歌DeepMind目前最强大的模型——Gemini 2.5 Pro,在计算成本上非常高昂,他希望建造一个更优的系统。

Jeff  Dean透露,自己正在酝酿一些新的想法,可能会成功,也可能不会成功,但朝着某个方向努力总会有奇妙之处。

参考资料:
https://www.youtube.com/watch?v=OEuh89BWRL4

☟☟☟

☞人工智能产业链联盟筹备组征集公告☜


精选报告推荐:

11份清华大学的DeepSeek教程,全都给你打包好了,直接领取:


【清华第一版】DeepSeek从入门到精通

【清华第二版】DeepSeek如何赋能职场应用?


【清华第三版】普通人如何抓住DeepSeek红利?

【清华第四版】DeepSeek+DeepResearch让科研像聊天一样简单?

【清华第五版】DeepSeek与AI幻觉

【清华第六版】DeepSeek赋能家庭教育

【清华第七版】文科生零基础AI编程:快速提升想象力和实操能力

【清华第八版】DeepSeek政务场景应用与解决方案

【清华第九版】迈向未来的AI教学实验

【清华第十版】DeepSeek赋能品牌传播与营销

【清华第十一版】2025AI赋能教育:高考志愿填报工具使用指南

 10份北京大学的DeepSeek教程

【北京大学第一版】DeepSeek与AIGC应用

【北京大学第二版】DeepSeek提示词工程和落地场景

【北京大学第三版】Deepseek 私有化部署和一体机

【北京大学第四版】DeepSeek原理与落地应用

【北京大学第五版】Deepseek应用场景中需要关注的十个安全问题和防范措施

【北京大学第六版】DeepSeek与新媒体运营

【北京大学第七版】DeepSeek原理与教育场景应用报告

【北京大学第八版】AI工具深度测评与选型指南

【北京大学第九版】AI+Agent与Agentic+AI的原理和应用洞察与未来展望

【北京大学第十版】DeepSeek在教育和学术领域的应用场景与案例(上中下合集)

8份浙江大学的DeepSeek专题系列教程

浙江大学DeepSeek专题系列一--吴飞:DeepSeek-回望AI三大主义与加强通识教育

浙江大学DeepSeek专题系列二--陈文智:Chatting or Acting-DeepSeek的突破边界与浙大先生的未来图景

浙江大学DeepSeek专题系列三--孙凌云:DeepSeek:智能时代的全面到来和人机协作的新常态

浙江大学DeepSeek专题系列四--王则可:DeepSeek模型优势:算力、成本角度解读

浙江大学DeepSeek专题系列五--陈静远:语言解码双生花:人类经验与AI算法的镜像之旅

浙江大学DeepSeek专题系列六--吴超:走向数字社会:从Deepseek到群体智慧

浙江大学DeepSeek专题系列七--朱朝阳:DeepSeek之火,可以燎原

浙江大学DeepSeek专题系列八--陈建海:DeepSeek的本地化部署与AI通识教育之未来

4份51CTO的《DeepSeek入门宝典》

51CTO:《DeepSeek入门宝典》:第1册-技术解析篇

51CTO:《DeepSeek入门宝典》:第2册-开发实战篇

51CTO:《DeepSeek入门宝典》:第3册-行业应用篇

51CTO:《DeepSeek入门宝典》:第4册-个人使用篇

5份厦门大学的DeepSeek教程

【厦门大学第一版】DeepSeek大模型概念、技术与应用实践

【厦门大学第二版】DeepSeek大模型赋能高校教学和科研

【厦门大学第三版】DeepSeek大模型及其企业应用实践

【厦门大学第四版】DeepSeek大模型赋能政府数字化转型

【厦门大学第五版】DeepSeek等大模型工具使用手册-实战篇

10份浙江大学的DeepSeek公开课第二季专题系列教程

【精选报告】浙江大学公开课第二季:《DeepSeek技术溯源及前沿探索》(附PDF下载)

【精选报告】浙江大学公开课第二季:2025从大模型、智能体到复杂AI应用系统的构建——以产业大脑为例(附PDF下载)

【精选报告】浙江大学公开课第二季:智能金融——AI驱动的金融变革(附PDF下载)

【精选报告】浙江大学公开课第二季:人工智能重塑科学与工程研究(附PDF下载)

【精选报告】浙江大学公开课第二季:生成式人工智能赋能智慧司法及相关思考(附PDF下载)

【精选报告】浙江大学公开课第二季:AI大模型如何破局传统医疗(附PDF下载)

【精选报告】浙江大学公开课第二季:2025年大模型:从单词接龙到行业落地报告(附PDF下载)

【精选报告】浙江大学公开课第二季:2025大小模型端云协同赋能人机交互报告(附PDF下载)

【精选报告】浙江大学公开课第二季:DeepSeek时代:让AI更懂中国文化的美与善(附PDF下载)

【精选报告】浙江大学公开课第二季:智能音乐生成:理解·反馈·融合(附PDF下载)

6份浙江大学的DeepSeek公开课第三季专题系列教程

【精选报告】浙江大学公开课第三季:走进海洋人工智能的未来(附PDF下载)

【精选报告】浙江大学公开课第三季:当艺术遇见AI:科艺融合的新探索(附PDF下载)

【精选报告】浙江大学公开课第三季:AI+BME,迈向智慧医疗健康——浙大的探索与实践(附PDF下载)

【精选报告】浙江大学公开课第三季:心理学与人工智能(附PDF下载)

【精选报告】浙江大学公开课第三季:人工智能赋能交通运输系统——关键技术与应用(附PDF下载)

【精选报告】浙江大学公开课第三季:人工智能与道德进步(附PDF下载)


相关阅读

干货推荐:
AI加油站】第一部:《大型语言模型应用检索增强生成:改变搜索、推荐和 AI 助手》附下载
【AI加油站】第二部:《程序员的自我修炼手册》(附下载)
【AI加油站】第三部:《大规模语言模型:从理论到实践》(附下载)
【AI加油站】第四部:《使用生成式人工智能和Python开始数据分析》(附下载)
【AI加油站】第五部:《使用生成式人工智能和Python开始数据分析》(附下载)
【AI加油站】第六部:《时间序列:建模、计算与推断》(附下载)
【AI加油站】第七部:《因果关系的逻辑理论的好书-A Logical Theory of Causality》(附下载)

【AI加油站】第八部:《模式识别(第四版)-模式识别与机器学习》(附下载)

【AI加油站】第九部:《Python深度学习(中文版)》(附下载)
【AI加油站】第十部:《机器学习方法》(附下载)
【AI加油站】第十一部:《深度学习》(附下载)
【AI加油站】第十二部:《从零开始的机器学习》(附下载)
【AI加油站】第十三部:《Transformer入门到精通》(附下载)
【AI加油站】第十四部:《LLM 应用开发实践笔记》(附下载)
【AI加油站】第十五部:《大模型基础 完整版》(附下载)
【AI加油站】第十六部:《从头训练大模型最佳实践》(附下载)
【AI加油站】第十七部:《大语言模型》(附下载)
【AI加油站】第十八部:《深度强化学习》(附下载)
【AI加油站】第十九部:清华大学《大模型技术》(附下载)
【AI加油站】第二十部:Prompt入门神书-《Prompt 学习指南》(附下载)
【AI加油站】第二十一部:吴恩达&open AI联合推出《大模型通关指南》(附下载)
【AI加油站】第二十二部:《李宏毅深度学习教程》值得反复阅读的神书!(附下载)
【AI加油站】第二十三部:Prompt经典中文教程-《提示工程指南》(附下载)
【AI加油站】第二十四部:爆火下载28万次!MIT最新神书《理解深度学习》(附下载)
【AI加油站】第二十五部:LLM4大名著,OpenAI专家强推《深度解析:大语言模型理论与实践》(附下载)
【AI加油站】第二十六部:NLP大牛Thomas Wolf等新书《Transformer自然语言处理》(附下载)
【AI加油站】第二十七部:哈工大博士耗时一年整理《PyTorch常用函数手册》,轻松掌握PyTorch的各种操作(附PDF下载)
【AI加油站】第二十八部:大模型炼丹大师必备《深度学习调优指南中文版-系统性优化模型》(附下载)
【AI加油站】第二十九部:炸裂发布!《大语言模型:导论》重磅发布!(附下载)
【AI加油站】第三十部:最值得读的LLM书!下载量10w+!《基于Transformer和扩散模型的生成式AI》(附下载)
【AI加油站】第三十一部:RL稀缺宝典!《强化学习的艺术》(附下载)
【AI加油站】第三十二部:一本醍醐灌顶的教科书!《大语言模型提示工程:构建LLM应用的艺术与科学》(附下载)
【AI加油站】第三十三部:机器学习好评榜第一《机器学习基础》(附下载)
【AI加油站】第三十四部:所有大模型领域学习者必读,没有之一!由深度学习三巨头联合撰写!(附下载)
【AI加油站】第三十五部:{AI炼丹神书}——从0到1榨干深度学习模型每一滴性能的终极战术手册《深度学习调优指南》(附下载)
【AI加油站】第三十六部:面向生产环境的大型语言模型实战手册《LLM 大语言模型构建指南》(附下载)
【AI加油站】第三十七部:《深度学习的数学导论:方法、实现与理论》从神经网络架构到物理信息模型的全景综述(附下载)
【AI加油站】第三十八部:下载量10w+!《大型语言模型:语言理解和生成》从文本分类到主题建模的实战指南(附下载)
【AI加油站】第三十九部:包教包会!《从零开始构建大语言模型的关键要点》大模型训练全景指南:从0到1的系统性最佳实践(附下载)
【AI加油站】第四十部:《大规模机器学习训练工程实战手册》——从硬件选型到故障恢复的系统性指南(附下载)
【AI加油站】第四十一部:《ChatGPT后训练全景解析:技术演进、核心挑战与未来方向》(附下载)
【AI加油站】第四十二部:《百页机器学习书》:从算法到实战的全景指南(附下载)
【AI加油站】第四十三部:《掌握大语言模型》核心知识速览:从NLP基础到LLM前沿实践(附下载)
【AI加油站】第四十四部:《精通PyTorch》-从CNN到Transformer、LLM、GNN的端到端实战图谱(附下载)
【AI加油站】第四十五部:《图神经网络导论》-全景拆解:从数学基石到落地应用的知识地图(附下载)
【AI加油站】第四十六部:谷歌大佬编写,我唯一熬夜看完的机器学习神作《机器学习:概率视角》(附下载)
【AI加油站】第四十七部:复旦大学张奇老师《自然语言处理导论》(附下载)
【AI加油站】第四十八部:Github持续霸榜!「Leetcode刷题笔记」解题思路/代码/模板开放下载!(附下载)
【AI加油站】第四十九部:下载10W+爆火神书《基于LangChain进行生成式AI开发》(附下载)
AI机器人设计推荐:
【AI加油站】机器人设计系列一:《IBM Robocode人工智能机器人研究》从Java编程到智能战斗系统指南(附下载)
【AI加油站】机器人设计系列二:《PVCBOT零基础机器人制作》从PVC线槽到专属机器人的完整入门指南(附下载)
【AI加油站】机器人设计系列三:《ROBOTC与机器人程序设计》从NXT到TETRIX的完整实战指南(附下载)
【AI加油站】机器人设计系列四:《多关节机器人原理与维修》全本技术精要总结(附下载)
【AI加油站】机器人设计系列五:《工业机器人应用与维护职业认知》——基于“任务驱动”的中职人才培养全景教材解析(附下载)
RPA 流程自动化系列推荐:
【AI加油站】RPA 流程自动化系列一:《机器人流程自动化魔力象限》市场格局、厂商优劣与选型指南(附PDF下载)
【AI加油站】RPA 流程自动化系列二:从RPA到APA:ProAgent引领的智能代理流程自动化革命(附PDF下载)
【AI加油站】RPA 流程自动化系列三:AUTONODE:认知 GUI 自动化的“神经-图式”自学习引擎全景解读(附PDF下载)
【AI加油站】RPA 流程自动化系列四:PromptRPA——面向智能手机的自然语言驱动机器人流程自动化系统综述(附PDF下载)
【AI加油站】RPA 流程自动化系列五:《FlowMind》:金融级智能工作流自动生成框架(附PDF下载)
面试推荐:
【AI加油站】AI面试专题一:BIO,NIO,AIO,Netty面试题(附下载)
【AI加油站】AI面试专题二:Git常用命令面试题(附下载)
【AI加油站】AI面试专题三:Java常用面试题(附下载)
【AI加油站】AI面试专题四:Linux系统的面试题集(附下载)
【AI加油站】AI面试专题五:Memcached 面试题集(附下载)
【AI加油站】AI面试专题六:MyBatis框架的面试题(附下载)
【AI加油站】AI面试专题七:MySQL相关的面试题资料(附下载)
【AI加油站】AI面试专题八:Netty面试题资料(附下载)
【AI加油站】AI面试专题九:Nginx的面试题资料(附下载)
【AI加油站】AI面试专题十:RabbitMQ的面试题资料(附下载)
【AI加油站】AI面试专题十一:Redis的面试题资料(附PDF下载)
【AI加油站】AI面试专题十二:Spring的面试题资料(附PDF下载)
【AI加油站】AI面试专题十三:Apache Tomcat的面试题资料(附PDF下载)
【AI加油站】AI面试专题十四:Zookeeper的面试题资料(附PDF下载)
【AI加油站】AI面试专题十五:《阿里巴巴Java开发手册》终极版的面试题资料(附PDF下载)
【AI加油站】AI面试专题十六:大数据技术面试题资料(附PDF下载)
【AI加油站】AI面试专题十七:Java并发多线程面试题资料(附PDF下载)
【AI加油站】AI面试专题十八:设计模式的面试题资料(附PDF下载)
【AI加油站】AI面试专题十九:Java虚拟机(JVM)的面试题资料(附PDF下载)
【AI加油站】AI面试专题二十:Elasticsearch的面试题资料(附PDF下载)
【AI加油站】AI面试专题二十一:TCP UDP Socket Http网络编程的面试题资料(附PDF下载)
【AI加油站】AI面试专题二十二:消息队列Kafka的面试题资料(附PDF下载)
【AI加油站】AI面试专题二十三:Spring Boot的面试题资料(附PDF下载)
【AI加油站】AI面试专题二十四:Spring Cloud的面试题资料(附PDF下载)
【AI加油站】AI面试专题二十五:Dubbo的面试题资料(附PDF下载)
大模型课程推荐:
【AI加油站】大模型课程系列一:大模型应用:从提示工程到AI智能体——系统化知识地图(附PDF下载)
【AI加油站】大模型课程系列二:大模型应用:从提示工程到AI智能体——系统化知识地图--合集(附PDF下载)
【AI加油站】大模型课程系列三:《大模型应用·第3章:大模型提示词》-大模型提示词设计七步法(附PDF下载)
【AI加油站】大模型课程系列四:《大模型应用·第4章:大模型辅助工作学习》一站式检索-办公-创作全攻略(附PDF下载)
【AI加油站】大模型课程系列五:《大模型应用·第5章:大模型检索增强》读懂大模型检索增强生成(RAG)全景(附PDF下载)
【AI加油站】大模型课程系列六:《大模型应用·第6章:大模型认知框架》从情景模仿到自我进化的7种思维范式(附PDF下载)
【AI加油站】大模型课程系列七:《大模型应用·第7章:大模型使用工具》-从“会聊天”到“能办事”的7个关键洞察(附PDF下载)
【AI加油站】大模型课程系列八:《大模型应用·第8章:AI智能体核心技术》-从单脑到群体协作的工程落地指南(附PDF下载)
【AI加油站】大模型课程系列九:《大模型应用·第9章:AI智能体开发平台》-从理论到落地的母婴助手案例解析(附PDF下载)
【AI加油站】大模型课程系列十:《大模型应用·第10章:AI智能体行业案例》-四大场景深度解析与实战指南(附PDF下载)

人工智能产业链联盟高端社区




资讯配图
精选主题推荐:
Manus学习手册
从零开始了解Manus

DeepSeek 高级使用指南,建议收藏

一次性说清楚DeepSeek,史上最全(建议收藏)

DeepSeek一分钟做一份PPT

用DeepSeek写爆款文章?自媒体人必看指南

【5分钟解锁DeepSeek王炸攻略】顶级AI玩法,解锁办公+创作新境界!

DeepSeek接入个人微信!24小时智能助理,随时召唤!
PS×Deepseek:一句话编写PS脚本,搞定PS批量导出图层
如何让AI给自己打工,10分钟创作一条爆款视频?
荐:
【中国风动漫】《姜子牙》刷屏背后,藏着中国动画100年内幕!
【中国风动漫】除了《哪吒》,这些良心国产动画也应该被更多人知道!

【中国风动漫】《雾山五行》大火,却很少人知道它的前身《岁城璃心》一个拿着十米大刀的男主夭折!

资讯配图
声明

免责声明:部分文章和信息来源于互联网,不代表本订阅号赞同其观点和对其真实性负责。如转载内容涉及版权等问题,请立即与小编联系(微信号:913572853),我们将迅速采取适当的措施。本订阅号原创内容,转载需授权,并注明作者和出处。如需投稿请与小助理联系(微信号:AI480908961)

编辑:Zero

资讯配图


资讯配图

资讯配图

声明:内容取材于网络,仅代表作者观点,如有内容违规问题,请联系处理。 
AI
more
出货 1000 万台硬件后,我们和「凯叔讲故事」聊了聊「AI玩具」的核心
躺在风口上的硅谷教授!身家180亿不离讲台,捧出7家AI创企
清华AIR助理教授赵昊:为什么选择研究机器人灵巧脸
无惧AI失业潮的「铁饭碗」,微软揭秘了!能干到退休
智慧地球大讲堂 | 创·无界  智·未来AI专题月开讲啦!
别错过这场AGI风暴!清华人大等AI大佬集结,剑指数字和物理世界进化
7个AI玩狼人杀,GPT-5获断崖式MVP,Kimi手段激进
AI杀死首个世界名校?全球TOP 3「翻译界哈佛」倒闭,毕业校友成绝版
AI读网页,这次真不一样了,谷歌Gemini解锁「详解网页」新技能
创业74年的山东第一民企,把AI请进滨州的厂房里
Copyright © 2025 成都区角科技有限公司
蜀ICP备2025143415号-1
  
川公网安备51015602001305号