
点击蓝字 关注我们


成果简介
极端温度环境(如深空探测、极地科考、高温工业场景)下的材料稳定性与功能保留,是柔性电子、生物材料保存及极端环境器件应用的核心挑战。传统水凝胶虽具备优异的柔软性与生物相容性,但其力学性能高度依赖可移动水分子,在温度变化时易因水分蒸发(高温)或冻结(低温)导致网络坍塌、僵硬脆化,且现有改进策略(如离子液体替换、盐溶液调控)存在易吸潮退化、温度耐受范围窄(通常低于80℃、高于-80℃)等缺陷,难以满足极端温区的长期稳定应用需求。为此,浙江大学张晓辰团队在《Science》发表研究成果,提出 “水锁定” 创新策略,成功开发出可在-115℃至143℃宽温域内保持柔软拉伸性的水凝胶材料,为极端温度下功能材料的设计与应用提供了突破性解决方案。
本研究以藻酸盐 - 聚丙烯酰胺双网络水凝胶(DN-凝胶)为模型,通过硫酸(H₂SO₄)介导的 “水锁定” 机制与牺牲网络保护设计,实现了水凝胶在极端温度下的性能稳定。一方面,H₂SO₄通过离子键与氢键双重作用,既能与水分子形成结合能超 60 kcal/mol 的水合物,将水分子牢固固定于聚合物网络中,又能通过取代聚合物链上的羟基等基团与网络结合,从空间上扩大水分子锁定区域;另一方面,藻酸盐网络作为 “牺牲相”,在60℃碳化过程中降解形成1.98-4.06 nm 的碳点,包裹聚丙烯酰胺主链以防止网络过度反应与坍塌,最终构建出完全碳化硫酸水凝胶(CS-凝胶)。此外,该策略还具备普适性。采用二甲基亚砜(DMSO)替代 H₂SO₄处理,可使水凝胶低温耐受下限扩展至-125℃;应用于聚(N-乙烯基吡咯烷酮)(PVP)水凝胶时,同样实现-112℃至135℃的宽温域稳定,解决了传统单网络水凝胶易降解、温度适应性差的问题。
研究亮点
首创“水锁定”核心策略:突破水凝胶极端温度耐受瓶颈,本研究通过H₂SO₄(或DMSO)在水分子与聚合物间建立强连接,并形成H₂SO₄水合物固定水分子,首次实现水凝在-115°C至143°C宽温域内保持柔软与拉伸性,远超现有离子液体、无机盐溶液等策略的温度覆盖范围。
设计牺牲网络-碳点保护层结构:本文创新性利用DN凝胶中海藻酸盐作为牺牲网络,其与硫酸反应后碳化形成纳米级碳点,均匀包裹聚丙烯酰胺主链,既阻止硫酸过度侵蚀,又保留聚合物网络完整性,保证材料极端条件下的机械性能和功能特性。
验证“水锁定”策略的普适性:该策略可灵活适配多种体系。溶剂上,除硫酸外,生物相容性的DMSO也能通过强氢键实现水锁定,且能解决硫酸的腐蚀性问题;水凝胶类型上,不仅适用于DN凝胶,单网络PVP凝胶经处理后也能实现-112°C至135°C的温度耐受,为不同场景应用提供更多选择。
图文解析

Fig. 1. Hydro-locking strategy and the phase transition temperature of S-gels. (A) A double-network hydrogel has a large proportion of free water among their polymer networks. H₂SO₄ molecules lock all water molecules on the polymer networks of hydrogels. (B) DSC measurements of S-gel and CS-gel demonstrate that no phase transition occurs between –115° and 143°C. The temperature range exceeds that of the liquid state of the binary H₂SO₄-H2O system. (C) DSC measurements of various hydrogels from –150° to 25°C. The temperature regions of the glass transition (Tg ), cold crystallization (Tcc), and freezing (Tf1 and Tf2) are highlighted. The disappearance of these peaks signifies a reduction in freewater molecules. (D) Comparison of thermodynamic events with phase diagramof the H₂SO₄-H2O system from –175° to 25°C. Diamonds indicate the Tg andTf emphasized in (C). The phase change progresses of the binary H2SO42O systemare indicated in gray. Circles inidcate ice transition. The dashed line indicatesthe lowest freezing temperature of the binary H2SO4-H2O system as a eutectic meltingof ice and H2SO4 hydrates. The shaded area indicates the range of Tg for thebinary H2SO4-H2O system.

Fig. 2. Reactions and interactions in S-gels. (A) Chemical structures of alginateand polyacrylamide and structure alterations of them after treated with H2SO4.(B) FTIR spectra of DN-gel, S20, S40, and CS-gel in the range of 700 to 1300 cm−1.The shoulder peak in S20 assigned to C–O stretching is indicated with an arrow,and the peaks related to H2SO4 are indicated in green. (C) Raman spectra of S20, S30,S40, and CS-gels from 300 to 800 cm−1. The peaks related to HSO4– and/orSO42– ions are indicated in green. (D) FTIR spectra of DN-gel, S20, and S40 in the range of 2800 to 3600 cm−1. In (B) to (D), the changes in the peak intensity
highlighted in yellow characterize [(A), top] the hydrolysis of alginate and [(A),bottom] the acidification of polyacrylamide. They exhibit a concentration-dependent manner, indicating stronger reactions and acidification upon increased acidity.(E) Raman spectra of S20, S30, and S40 gels at –130°C from 2500 to 4000 cm−1. The highlighted area indicates the peak for –NH2 symmetric stretching. The disappearance of this peak indicates that –NH2 groups are being grafted by H2SO4 hydrates.

Fig. 3. Structure properties of S-gels and in situ carbon dots. (A toD) Optical and scanning electron microscope (SEM) images illustrating themicroscope morphology of polymers in (A) PAAm-gel after treating withH 2 SO 4 and heating in an oven at 60°C, (B) S-gel, (C) CS-gel, and (D) PVPhydrogel after treating with H2SO4 and heating in an oven at 60°C (PVP-gel).The arrows indicate the discontinuous filaments in PAAm-gel and protectivecarbon layer in CS-gel and PVP-gel. (E) Transmission electron microscopy images of carbon dots extracted from the CS-gel. (F) FTIR spectra of CS-gel washed by DMSO and DMSO from 800 to 1400 cm−1 . The peaks at1020 cm−1 and 1221 cm−1 indicate the organo sulfate groups, which (G) connect carbon dots to the PAAm chains. (H) Optical and UV imagesof CS-gel washed with DMSO. The images were obtained with an invertedfluorescence microscope (Leica DMi8, Leica Biosystems, Germany) equippedwith an excitation light source of 340 to 380 nm.

Fig. 4. Mechanical properties of CS-gel at extreme temperatures. (A and B) Optical images of (A) DN-gel and (B) CS-gel when stretched at 25°, –80°, and 140°C. (C and D) Tensile stress-strain curves of (C) DN-gel at 25° and –80°, and (D) CS-gel at 25°, –100°, and 140°C. (E) A comparison of fracture energy, Young’s modulus, and breaking elongation of DN-gel at 25° and –80°, and CS-gel at 25°, –100°, and 140°C (n= 3 independent measurements). (F) Relative resistance ratio of the CS-gel when subjected to repeated stretch.
研究结论
本研究创新性提出 “水锁定” 设计策略,通过硫酸(H₂SO₄)介导的分子作用与牺牲网络保护机制,成功突破水凝胶极端温域性能瓶颈,实现 “极端温度稳定性-力学稳健性-功能保留-普适适配性” 的一体化,为宽温域功能水凝胶的设计与应用提供全新解决方案。
“水锁定”策略的水凝胶通过H₂SO₄介导水分子与聚合物网络的强结合,并以DN-凝胶中藻酸盐为牺牲网络,经60℃碳化形成1.98-4.06 nm 碳点包裹聚丙烯酰胺主链防止网络坍塌,所制备的完全碳化硫酸水凝胶(CS-凝胶)可在-115℃至143℃范围内无明显相变,且极端温度下仍保持柔软拉伸性(如 -80℃冷冻24小时可承受拉伸扭转、140℃应力-应变曲线近室温)。此外,该策略还具备普适性,不仅可用生物相容性溶剂二甲基亚砜(DMSO)替代硫酸将 DN - 凝胶低温耐受扩展至-125℃,应用于聚(N-乙烯基吡咯烷酮)(PVP)水凝胶时也能实现- 112℃至135℃稳定(DMSO 处理后低至-122℃);同时,CS-凝胶兼具多功能性,电导率达1.27 S/m(140℃升至3.26 S/m、-80℃仍保留0.07% 导电性,可作极端温度电阻式应变-压力传感器),碳点还赋予其340-380 nm 紫外光下461 nm蓝光发射特性且荧光强度可通过藻酸盐含量调控
综上,本研究通过“分子锁定-牺牲保护-体系适配”的“水锁定”设计策略,首次实现了水凝胶在-115℃至143℃宽温域内极端温度稳定-力学柔软拉伸-多功能集成-普适适配的一体化性能,有效解决传统水凝胶极端温度下易失活、现有改进策略局限多的核心痛点。其应用价值不仅体现在极端环境柔性电子器件(如极地科考、高温工业的应变监测),还可拓展至生物材料乃至生物体的长期保存(如低温样本活性保留),进而为深空探测、极端环境作业等特殊场景下的材料稳定与功能监测提供了理想方案。
免责声明:原创仅代表原创编译,水平有限,仅供学术交流,如有侵权,请联系删除,文献解读如有疏漏之处,我们深表歉意。


公众号丨智能传感与脑机接口
