大模型“记性差一点”反而更聪明!金鱼损失随机剔除token,让AI不再死记硬背

量子位 2025-09-03 13:16
henry 发自 凹非寺
量子位 | 公众号 QbitAI

训练大模型时,有时让它“记性差一点”,反而更聪明!

大语言模型如果不加约束,很容易把训练数据原封不动地复刻出来。为解决这个问题,来自马里兰大学、图宾根大学和马普所的研究团队提出了一个新方法——金鱼损失(Goldfish Loss)

资讯配图

顾名思义,金鱼损失就是让模型像金鱼一样,不去死记每一个细节,而是在损失函数计算时随机剔除一小部分token。

由此,模型不再逐字记住训练集内容,但仍能学会语言规律。

实验显示,LLaMA-2在使用金鱼损失后:

用网友的精辟评论概括就是:dropout,但损失函数!

资讯配图

在梯度计算中随机屏蔽部分token

金鱼损失的核心理念非常简单,就是在模型训练过程中随机剔除一部分训练文本中的tokens,使其不参与损失计算。

这样一来,当模型在推理阶段遇到这些位置时,就只能“猜测”,而不是逐字逐句复现训练数据的完整序列。

此外,为了保证被剔除token的一致性,研究人员设计了一种基于哈希(hashing)的掩码策略。

资讯配图

那么,这和同样是防止模型背会的正则化方法有什么不同呢?

Dropout这样的正则化方法为例,它通过在训练时“加噪声”来防止模型过度依赖某些参数,从而提高模型举一反三的能力。

但这样做的问题在于:如果只是随机丢token,那么,每次看到同一段落时,丢掉的地方不一样,模型累计几次就能拼凑出完整段落。

所以,说到底,模型还是靠死记硬背,记住了答案。

相比之下,金鱼损失则用哈希掩码确保每次遇到同一段落,掩盖位置都一样,这就从根本上阻止了模型复现完整训练文本。

接下来,我们来看金鱼损失具体是怎么做的。

在传统的next-token prediction中,模型以序列中的下一个真实token作为目标,输出预测分布,并基于该分布计算交叉熵损失。

资讯配图

在金鱼损失下,模型虽然也在前向传播中预测序列里下一个 token。但在计算损失时,会以一定的概率将某些位置的token从损失计算里“抹掉”。

也就是说,有些真实的下一个token不会作为目标来训练。

资讯配图

在这里,研究人员采用了简单的静态掩码(static mask),剔除每序列中的第4个token。

更进一步,为了确保模型不会从其他地方学到被掩码的数据(例如不同的文档会在不同的网页中反复出现),研究团队还提出了一种局部化哈希掩码(localized hashed mask),使得当相同的前h个token出现时,掩盖模式是相同的(可重复)。

实验测试与结果

为了验证金鱼损失确实能防止记忆化,研究团队设计了两种实验场景:

一种是极端场景,通过对少量样本进行多个训练周期(即重复)来强烈促使记忆化;

另一种是标准场景,模拟现实模型训练中使用的批次处理方式 。

同时,为了评估模型的记忆化程度,研究采用了以下指标:

实验表明,在极端场景下,标准训练导致模型逐字记忆了100篇文章中的84篇,而金鱼损失没有记忆任何文章

资讯配图(注:实验让LLaMA-2-7B在《哈利·波特》第一章或100篇维基百科文档上进一步训练了100个epoch)

此外,在标准训练场景下,金鱼损失也明显减少了模型逐字复现训练语料库中目标序列的情况。

资讯配图

但这里可能有个直觉式的反应——如果让模型“随机漏学”一些token,它的能力会不会也随之降低呢?

对此,研究人员进行了测试:研究表明,金鱼损失模型、标准损失模型和对照模型之间的总体性能没有系统性差异。

资讯配图

需要注意的是,金鱼损失的核心在于忽略部分token的梯度计算。因此,为了学到足够的语言模式,模型必须通过更多数据来补偿这些空缺,这可能导致计算效率的下降。

参考链接

[1]https://arxiv.org/pdf/2406.10209


一键三连「点赞」「转发」「小心心」

欢迎在评论区留下你的想法!

—  —


专属AI产品从业者的实名社群,只聊AI产品最落地的真问题 资讯配图 扫码添加小助手,发送「姓名+公司+职位」申请入群~
资讯配图
进群后,你将直接获得:
 👉 最新最专业的AI产品信息及分析 🔍 
 👉 不定期发放的热门产品内测码 🔥
 👉 内部专属内容与专业讨论 👂


🌟 点亮星标 🌟

科技前沿进展每日见

声明:内容取材于网络,仅代表作者观点,如有内容违规问题,请联系处理。 
AI
more
对话心资本吴炳见:我不问AI创业的“终局”|甲子光年
科研AI的进化论!系统梳理600+数据集与模型,上海AI Lab等发布科学大语言模型全景式综述
【报告】AI专题一:2025年人工智能就绪度白皮书(附PDF下载)
重磅!苹果要做AI搜索了
83岁用DeepSeek抢单,96岁凭AI挣养老钱!这群80+老人比你还会玩AI
AI边刷视频边思考!快手最新多模态大模型开源,80亿参数,实测推理超快
AI也邪修!Qwen3改Bug测试直接搜GitHub,太拟人了
DeepSeek计划年底前发布AI智能体 抢占下一代人机交互入口
抱上Meta“大腿”后,自家公司要搞黄了?Scale AI狂丢大客户,又遭6年老员工“背刺”
港科广×腾讯联手打造《我的世界》神操作,400张截图就能让AI挖矿通关,成本降至5%|EMNLP 2025
Copyright © 2025 成都区角科技有限公司
蜀ICP备2025143415号-1
  
川公网安备51015602001305号