压裂液与超低界面张力:非常规油气藏开发的微观革命(2/4)第二部分 沉默的杀手--水锁效应与毛细管阻力机制

CNGTX科学仪器 2026-01-16 08:00

第二部分 沉默的杀手
水锁效应与毛细管阻力机制

Part 2: The Silent Killer — Mechanisms of Water Blocking and Capillary Resistance


2.1

毛细管力:纳米孔隙中的绝对统治者

Capillary Pressure: The Absolute Ruler in Nanopores
压裂液与超低界面张力:非常规油气藏开发的微观革命(2/4)第二部分 沉默的杀手--水锁效应与毛细管阻力机制图1

在致密砂岩和页岩基质中,孔喉半径极小,通常在纳米至微米量级。这种极端的空间限制使得毛细管力 (Capillary Pressure, Pc)成为流体流动的主要阻力。根据经典的杨-拉普拉斯方程 (Young-Laplace Equation)

In tight sandstone and shale matrices, pore throat radii are extremely small, typically ranging from nanometers to microns. This extreme spatial confinement makesCapillary Pressure (Pc)the primary resistance to fluid flow. According to the classicYoung-Laplace Equation:
Pc= 2σ cosθ / r

该公式揭示了三个核心变量之间的严苛关系:
1. 界面张力 (σ):正比关系。IFT 越高,阻力越大。
2. 润湿角 (θ):反映岩石表面的亲水/亲油性。
3. 孔隙半径 (r):反比关系。这是非常规油气开发的痛点所在——当 减小 1000 倍(从常规的微米级到页岩的纳米级),阻力Pc会直接增加 1000 倍。

This equation reveals a brutal relationship among three core variables:
1. Interfacial Tension (σ): Proportional relationship. Higher IFT means greater resistance.
2. Contact Angle (θ): Reflects the hydrophilicity/lipophilicity of the rock surface.
3. Pore Radius (r): Inverse relationship. This is the pain point of unconventional development—when decreases by a factor of 1000 (from conventional microns to shale nanometers), the resistance Pincreases directly by a factor of 1000.

在常规压裂液(高 IFT)作用下,纳米孔隙产生的毛细管阻力可能高达数兆帕(MPa)。这意味着,除非地层能够提供极高的驱动压差,否则侵入的压裂液将无法排出,油气也无法进入裂缝。

Under the action of conventional fracturing fluid (High IFT), the capillary resistance generated by nanopores can reach several Megapascals (MPa). This implies that unless the formation can provide an extremely high driving pressure differential, the invaded fracturing fluid cannot be expelled, and hydrocarbons cannot enter the fractures.
2.2

水锁效应与贾敏效应:流动的终结者

Water Blocking and Jamin Effect: The Terminators of Flow
压裂液与超低界面张力:非常规油气藏开发的微观革命(2/4)第二部分 沉默的杀手--水锁效应与毛细管阻力机制图2

水锁效应 (Water Blocking),也称为液锁(Liquid Blocking),是指由于毛细管力的束缚,外来流体(压裂液滤液)滞留在近井地带或裂缝壁面的孔隙中,使得储层的相对渗透率 (Relative Permeability)接近于零的现象。

Water Blocking, also known as Liquid Blocking, refers to the phenomenon where, due to capillary confinement, foreign fluids (fracturing fluid filtrate) are trapped in the pores of the near-wellbore zone or fracture faces, causing the reservoir's Relative Permeability to approach zero.

其微观表现形式之一是贾敏效应 (Jamin Effect)。当一个非润湿相液滴(如油滴)试图穿过一个充满润湿相(水)的收缩孔喉时,液滴必须发生形变。
1. 液滴前端被迫收缩,曲率半径R1变小,毛细管压力增大。
2. 液滴后端保持较宽,曲率半径R2较大,毛细管压力较小。

One of its microscopic manifestations is the Jamin Effect. When a non-wetting phase droplet (e.g., an oil droplet) attempts to pass through a constricted pore throat filled with a wetting phase (water), the droplet must deform.
1. The front of the droplet is forced to contract, reducing the radius of curvatureR1and increasing capillary pressure.
2. The rear of the droplet remains wider, with a larger radius of curvature Rand lower capillary pressure.

由此产生的附加阻力ΔP = 2σ (1/R1- 1/R2)就像一个顽固的塞子,阻止液滴移动。如果界面张力σ 很高,液滴表面就像紧绷的橡胶皮,坚硬而难以变形,最终导致流体“卡死”在喉道处。

The resulting additional resistance ΔP = 2σ (1/R1- 1/R2acts like a stubborn plug, preventing droplet movement. If the interfacial tensionσis high, the droplet surface behaves like a taut rubber skin—rigid and resistant to deformation—ultimately causing the fluid to get "stuck" at the throat.
2.3

启动压力梯度:地层能量的极限

Threshold Pressure Gradient: The Limits of Formation Energy

为了克服上述阻力,必须施加一个外部压力,称为启动压力 (Threshold Pressure / Kick-off Pressure)

To overcome the aforementioned resistance, an external pressure must be applied, known as the Threshold Pressure or Kick-off Pressure.
ΔPdrive>ΔPcapillary

在低压油气藏中,地层能量往往非常有限。如果压裂液的 IFT 维持在常规水平(20-30 mN/m),计算得出的启动压力往往远超地层自身的能量水平。结果是灾难性的:压裂液无法返排,形成永久性的伤害带,油井产量远低于预期。这不仅是技术失败,更是巨大的经济损失。

In low-pressure hydrocarbon reservoirs, formation energy is often very limited. If the fracturing fluid's IFT remains at conventional levels (20-30 mN/m), the calculated threshold pressure often far exceeds the formation's own energy level. The result is catastrophic: fracturing fluid cannot flow back, forming a permanent damage zone, and well production falls far below expectations. This is not just a technical failure but a massive economic loss.
2.4

数据证言:高界面张力的代价

Data Testimony: The Cost of High Interfacial Tension

实验室岩心驱替实验和现场数据均证实了界面张力与储层伤害之间的强相关性:
• 高 IFT 体系:造成近井地带渗透率降低 70-90%,返排率低至 10-20%。
• 低 IFT 体系:渗透率恢复率可提升至 70% 左右。
• 超低 IFT 体系 (10-3mN/m):渗透率恢复率可达 90% 以上,且通过自发渗吸 (Spontaneous Imbibition)作用,压裂液能主动置换出基质中的油气,实现“变害为利”。

Laboratory core flooding experiments and field data both confirm the strong correlation between interfacial tension and reservoir damage:
• High IFT Systems: Cause 70-90% reduction in near-wellbore permeability, with flowback rates as low as 10-20%.
• Low IFT Systems: Permeability recovery can improve to around 70%.
• Ultra-Low IFT Systems (10-3mN/m): Permeability recovery can reach over 90%. Moreover, throughSpontaneous Imbibition, the fracturing fluid can actively displace hydrocarbons from the matrix, turning a "hazard into a benefit".
既然降低界面张力是解决水锁效应、释放产能的唯一物理路径,那么如何精准测量这一关键参数就成了首要问题。传统的测量方法在面对“超低”这一数量级时纷纷失效。下一部分,我们将介绍这一领域的终极裁判——旋转滴张力仪,并解释为何它是测量超低 IFT 的唯一标准。

Since reducing interfacial tension is the sole physical pathway to solving water blocking and unlocking productivity, accurately measuring this key parameter becomes the paramount issue. Traditional measurement methods fail one after another when ensuring the order of magnitude of "Ultra-Low." In the next part, we will introduce the ultimate arbiter in this field—the Spinning Drop Tensiometer—and explain why it is the sole standard for measuring Ultra-Low IFT.



声明:内容取材于网络,仅代表作者观点,如有内容违规问题,请联系处理。 
more
Subsense获1000万美元投资,首家基于纳米颗粒的脑机接口公司
耐心之城:南京的芯片投资哲学
投资出海必看:10家中国车企海外布局图谱(中英版)
Hugging Face 拒绝英伟达5亿美元投资,坚守开源AI理念
2026年核心网趋势观察:在迈向L4自智网络的道路上,通信运营商必须投资AI工具,以实现核心网运维自动化
1000亿美元投资恐告吹!英伟达股价大跌
2026年中国工业机器人产业链图谱及投资布局分析
总投资30亿元、新增产能22000平方,辰显光电拟扩建玻璃基Micro LED产线
雷鸟创新获移动、联通旗下基金投资 新一轮融资规模超10亿
物理AI时代重磅芯片IPO!5年干到“全球第一”,美团腾讯联手押注
Copyright © 2025 成都区角科技有限公司
蜀ICP备2025143415号-1
  
川公网安备51015602001305号