EMNLP 2025 | 动态压缩CoT推理新方法LightThinker来了

机器之心 2025-08-28 12:29
资讯配图

随着 AI 技术的飞速发展,从「快思考」到 「慢思考,大语言模型(LLMs)在处理复杂推理任务上展现出惊人的能力。无论是我们熟知的思维链(CoT),还是更复杂的深度思考模式(Thinking),都让 AI 的回答日益精准、可靠。


然而,这种性能的提升并非没有代价。模型在推理过程中会产生大量的中间步骤和文本(tokens),这不仅极大地拖慢了计算速度,还对内存和计算资源造成了巨大的压力。简单来说,就是「想得越多,算得越慢,耗得越多」。


为了解决这一难题,研究者们从人类的认知过程中汲取灵感。想象一下人类在解决一个复杂数学题时的情景:我们通常会在草稿纸上写下关键的计算步骤(如下图 a 中的黄色高亮部分),而将一些辅助性的思考过程(非高亮部分)放在脑中。


资讯配图

图 1:(a) 展示了一个典型的思维链推理过程,黄色部分为关键步骤。(b) 对比了传统方案 Vanilla 与 LightThinker 的推理流程。


本文中,来自浙江大学、蚂蚁集团等机构的研究者提出了 LightThinker,它模仿了这一高效的思考模式。它训练 LLM 在推理过程中动态地将冗长的中间思考步骤压缩成紧凑的表示(gist tokens /cache tokens),然后「扔掉」原始的、繁琐的推理链,仅保留核心摘要以继续下一步的思考。 这样一来,存放在上下文窗口中的 tokens 数量被大幅削减,从而显著降低了内存占用和计算成本。


资讯配图



LightThinker 概览


资讯配图


LightThinker 通过训练的方式让模型具备这种能力。这涉及到两个关键问题:「何时压缩」和「如何压缩」。整个过程可以概括为以下三个关键步骤:


第一步:数据重构 —— 在思考流程中植入「压缩指令」


LightThinker 的第一步就是改造训练数据,让 LLM 明白「压缩」这个动作的存在和时机 。具体操作是:


  1. 步骤划分:首先,将模型原本冗长的完整回答 Y,按照语义或段落(即一个完整的「想法」)切分成若干个思维步骤 S1, S2, S3, ...。

  2. 插入特殊指令符:在这些思维步骤之间,插入一组特殊的「指令令牌」4。这组指令符主要包含两个部分:



经过这样的改造,原本一条完整的思考链,就变成了一个「思考步骤 1 S1 → 进行压缩 → 继续思考步骤 S2 → 再次压缩 → ...」的全新格式。这等于是在模型的学习材料中明确地标注出了「何时」需要进行压缩。


注意,研究者在具体实现中,采用换行符作为思维步骤的划分,此处不存在任何数据精心构造的过程。


第二步:注意力改造 —— 学会压缩与理解压缩的内容


教会了模型「何时」压缩,下一步就是最关键的如何压缩。这主要通过一种名为 「Thought-based Attention Mask」的技术来实现,如图 2 (b) 所示。精确地控制着模型在思考时 “能看什么” 和 “不能看什么” 。


这个过程分为两个阶段:




其他所有原始的、未压缩的思维步骤都会被「遮蔽」。这迫使模型必须将 Si 中的所有关键信息高度浓缩并存储到 C 中 。



通过这种方式,模型被迫学会仅依赖紧凑的「思想摘要」来进行连贯的、层层递进的推理,而不是依赖越来越长的原始思考全文。


第三步:动态推理 ——「即用即弃」的高效循环


经过以上两个步骤的训练,LightThinker 模型在实际推理时,就会形成一种高效的动态循环,如图 1 (b) 和图 2 (c) 所示,清晰地展示了「生成→压缩→抛弃」的动态循环过程。下面以图 1 (b) 为例进行分析:


  1. 模型接收问题,生成第一段思考(Thought 1)。

  2. 触发压缩,将 Thought 1 中的核心信息压缩成紧凑的摘要(CT1)。

  3. 抛弃原文,将冗长的 Thought 1 从上下文中丢弃。

  4. 模型基于问题和摘要(CT1),生成第二段思考(Thought 2)。

  5. 再次压缩,将 Thought 2 压缩为摘要(CT2),并丢弃 Thought 2 原文。

  6. 如此循环,直到问题解决。


通过这种「即用即弃」的机制,LightThinker 确保了模型的上下文窗口始终保持在一个非常小的尺寸,从而解决了因上下文过长导致的内存爆炸和计算缓慢问题,实现了效率与性能的完美平衡。


图 3 展示了不同方法在推理过程中上下文长度的变化,其中曲线和坐标轴围城的面积为我们定义的新指标 Dependency,其意义生成 token 时需要关注 token 的数量总和。


资讯配图


实验结果


研究者在四个数据集和两个不同的模型上对 LightThinker 进行了广泛的测试,结果如表 1 所示。


资讯配图

表 1 主要实验结果。Acc 为准确率,Time 为平均推理耗时,Peak 为平均峰值 token 占用数量,Dep 为生成 token 时需要关注 token 的数量总和(如图 3)所示。


结果表明,在 Qwen 系列模型上,与传统模型(Vanilla)相比:



此外,在 Llama 上,也取得了准确度和效率的平衡。


相关工作


当前关于加速大语言模型(LLMs)推理过程的研究主要集中在四类方法:模型量化、辅助解码、生成更少的 Token 和减少 KV 缓存。模型量化包括参数量化 [1-2] 和 KV 缓存量化 [3-4],辅助解码主要包括投机采样,本节将重点关注后两类方法。


需要注意的是,生成长文本和理解长文本代表着不同的应用场景,因此,专门针对长文本生成阶段的加速方法(例如,预填充阶段加速技术如 AutoCompressor [5]、ICAE [6]、LLMLingua [7]、Activation Beacon [8]、SnapKV [9] 和 PyramidKV [10])不在此处讨论。以下是后两类方法的详细概述。


生成更少的 Token


这一类别可以根据推理过程中使用的 token 数量和类型进一步分为三种策略:



这三种策略都是在模型训练后实施的,推理过程中不需要额外干预。从技术上讲,这些方法的加速效果依次递增,但代价是 LLM 的泛化性能逐渐下降。此外,第一种策略并不能显著减少 GPU 内存使用。


减少 KV 缓存


这一类别可以分为两种策略类型:基于剪枝的离散空间 KV 缓存选择和基于合并的连续空间 KV 缓存压缩。



这两种策略都需要在推理过程中进行干预。关键区别在于:第一种策略是无需训练的,但对每个生成的 token 都要应用淘汰策略;而第二种策略是基于训练的方法,允许 LLM 自主决定何时应用淘汰策略。


局限性


受限于自身的数据重构方案(目前分割思维步骤是依赖规则,而不是基于语义)和训练数据(约 16K 训练数据),本文方法在数学相关的任务上表现并不出色。


如下图所示,展示了 LightThinker 在 GSM8K 上的一个 Bad Case。研究者观察到,尽管 LLM 在思考过程中得出了正确答案(见上图中的 Model's Thoughts 字段),但在最终输出中却出现了错误(见图中的 Model's Solution 字段)。


具体来说,在 Model's Solution 字段的第三句话中,第一次出现的「4000」是错误的。这表明在第二次压缩步骤中发生了信息丢失(理论上,「8000」、「4000」和「24000」都应该被压缩,但 LLM 只压缩了「4000」和「24000」),导致后续的推理错误。这类错误在 GSM8K 数据集中频繁出现,表明当前的压缩方法对数值的敏感度还不够。


资讯配图


参考文献

[1] Lin J, Tang J, Tang H, et al. AWQ: Activation-aware weight quantization for on-device LLM compression and acceleration. MLSys 2024.

[2] Dettmers T, Lewis M, Belkada Y, et al. GPT3.INT8 (): 8-bit matrix multiplication for transformers at scale. NeurIPS 2022.

[3] Liu Z, Yuan J, Jin H, et al. KIVI: A tuning-free asymmetric 2bit quantization for KV cache. ICML 2024b.

[4] Hooper C, Kim S, Mohammadzadeh H, et al. KVQuant: Towards 10 million context length LLM inference with KV cache quantization. NeurIPS 2024.

[5] Chevalier A, Wettig A, Ajith A, et al. Adapting language models to compress contexts. EMNLP 2023.

[6] Ge T, Hu J, Wang L, et al. In-context autoencoder for context compression in a large language model. ICLR 2024.

[7] Jiang H, Wu Q, Lin C, et al. LLMLingua: Compressing prompts for accelerated inference of large language models. EMNLP 2023.

[8] Zhang P, Liu Z, Xiao S, et al. Long context compression with activation beacon. arXiv:2401.03462, 2024b.

[9] Li Y, Huang Y, Yang B, et al. SnapKV: LLM knows what you are looking for before generation. NeurIPS 2024.

[10] Cai Z, Zhang Y, Gao B, et al. PyramidKV: Dynamic KV cache compression based on pyramidal information funneling. CoRR abs/2406.02069, 2024.

[11] Han T, Wang Z, Fang C, et al. Token-budget-aware LLM reasoning. CoRR abs/2412.18547, 2024.

[12] Ding M, Liu Z, Fu Z, et al. Break the chain: Large language models can be shortcut reasoners. CoRR abs/2406.06580, 2024.

[13] Nayab S, Rossolini G, Buttazzo G, et al. Concise thoughts: Impact of output length on LLM reasoning and cost. CoRR abs/2407.19825, 2024.

[14] Liu T, Guo Q, Hu X, et al. Can language models learn to skip steps? NeurIPS 2024a.

[15] Kang Y, Sun X, Chen L, et al. C3oT: Generating shorter chain-of-thought without compromising effectiveness. CoRR abs/2412.11664, 2024.

[16] Arora D, Zanette A. Training language models to reason efficiently. arXiv:2502.04463, 2025.

[17] Luo H, Shen L, He H, et al. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning. arXiv:2501.12570, 2025.

[18] Hao S, Sukhbaatar S, Su D, et al. Training large language models to reason in a continuous latent space. CoRR abs/2412.06769, 2024.

[19] Cheng J, Van Durme B. Compressed chain of thought: Efficient reasoning through dense representations. CoRR abs/2412.13171, 2024.

[20] Deng Y, Choi Y, Shieber S. From explicit CoT to implicit CoT: Learning to internalize CoT step by step. CoRR abs/2405.14838, 2024.

[21] Deng Y, Prasad K, Fernandez R, et al. Implicit chain of thought reasoning via knowledge distillation. CoRR abs/2311.01460, 2023.

[22] Zhang Z, Sheng Y, Zhou T, et al. H2O: Heavy-hitter oracle for efficient generative inference of large language models. NeurIPS 2023.

[23] Xiao G, Tian Y, Chen B, et al. Efficient streaming language models with attention sinks. ICLR 2024.

[24] Chen G, Shi H, Li J, et al. SepLLM: Accelerate large language models by compressing one segment into one separator. CoRR abs/2412.12094, 2024.

[25] Wu J, Wang Z, Zhang L, et al. SCOPE: Optimizing key-value cache compression in long-context generation. CoRR abs/2412.13649, 2024a.

[26] Pang J, Ye F, Wong D, et al. Anchor-based large language models. ACL 2024


资讯配图

© THE END 

转载请联系本公众号获得授权

投稿或寻求报道:liyazhou@jiqizhixin.com

声明:内容取材于网络,仅代表作者观点,如有内容违规问题,请联系处理。 
NLP
more
大模型时代下,nlp初学者需要怎么入门?
刚刚,NLP先驱、斯坦福教授Manning学术休假,加盟风投公司任合伙人
顶会ACL 2025 议程全览,Zettlemoyer、Rieser领衔,NLP年度盛会看点速递!
突破通用领域推理的瓶颈!清华NLP实验室强化学习新研究RLPR
【AI加油站】第二十六部:NLP大牛Thomas Wolf等新书《Transformer自然语言处理》(附下载)
EMNLP 2025 | 动态压缩CoT推理新方法LightThinker来了
港科广×腾讯联手打造《我的世界》神操作,400张截图就能让AI挖矿通关,成本降至5%|EMNLP 2025
Copyright © 2025 成都区角科技有限公司
蜀ICP备2025143415号-1
  
川公网安备51015602001305号