浙大侯廷军团队联合IIT等发布系统综述:全景解析机器学习加持下的「增强采样」方法

ScienceAI 2025-09-16 13:14

将 ScienceAI 设为星标

第一时间掌握

新鲜的 AI for Science 资讯

资讯配图


资讯配图

编辑丨coisini

分子动力学(MD)模拟已成为理解分子尺度物理、化学与生物过程不可或缺的工具,在揭示复杂分子体系的微观行为机制方面具有巨大潜力。

然而,传统的 MD 方法因为模拟的时间尺度有限,其有效性常受限于稀有事件相关的长时间尺度问题。为应对该挑战,增强采样方法应运而生,近年来更是与机器学习技术日益深度融合。

资讯配图

近期,浙江大学药学院侯廷军团队联合意大利技术研究院(IIT)等发布了一篇综述 ——《Enhanced Sampling in the Age of Machine Learning: Algorithms and Applications》,全景解析了在机器学习技术的加持下,增强采样方法的发展。浙江大学药学院博士生祝凯是综述共同一作。

资讯配图

综述地址:https://arxiv.org/pdf/2509.04291

综述概览

该综述旨在全面阐述 ML 与增强采样技术融合的方法论进展,并为关注实际应用的研究者提供实践视角。综述展示了跨领域应用案例,重点分析了实际部署此类模型的需求与挑战,涵盖蛋白质折叠等生物构象变化、配体结合热力学与动力学、化学催化反应及结构相变等重要领域。

资讯配图

在众多机器学习与增强采样的融合方向中,最具实质性和广泛性的进展体现在集合变量(collective variable,CV)的构建方面,但由于即使采用近似变量也能实现显著的加速效果,因此带来了两方面影响:一方面,它催生了多样化策略与学习目标的开发应用;另一方面,由于缺乏单一明确的目标,方法学变体激增。

资讯配图

除构建 CV 外,机器学习还在多个层面推动增强采样技术发展:包括表征偏置势能、优化自由能微扰方案、指导副本交换协议等。

资讯配图
资讯配图

一些颇具前景的新方法正崭露头角,例如完全用机器学习算法取代偏置方案,甚至用生成模型替代传统采样。但这些研究仍处于萌芽阶段,尽管前景可观,新方法在成为通用解决方案之前仍面临重大障碍,尤其对于具有大量自由度(如溶剂分子)的大型真实体系。

综述指出:将机器学习技术加持的增强采样方法扩展到更大更复杂的异质体系(如固有无序蛋白、生物分子组装体或真实催化环境)仍存在巨大挑战。关键原因在于这些方法的部署尚未实现全自动化:仍需大量化学直觉来选择初始条件、定义合适表征方式及识别目标过程。

要实现全自动增强采样的目标,需要在多个层面取得突破:

首先,表征学习的进步至关重要。对复杂大型体系而言,构建合适描述符仍是主要瓶颈,往往需要深厚的领域专业知识。

第二,将集合变量学习与偏置势能学习统一于端到端框架尤其值得关注。传统上这两个环节相互分离,若将低维表征识别与偏置势的自适应构建耦合,可以形成全集成工作流,实现探索与收敛的双重自动化。

第三,随着方法学复杂度和表现力的提升,可解释性成为紧迫议题。领域需与可解释人工智能更紧密融合,以确保工具保持透明性、可解释性和实践可用性。

要实现这些突破,还需进一步加强增强采样与机器学习势函数的融合,并开发统一的软件生态系统,无缝集成工作流的所有环节:从表征学习与集合变量构建,到偏置方案设计、机器学习势函数应用,再到后处理分析工具与结果解读。

这些进展共同作用,终将把分子动力学转化为真正的「计算显微镜」,在扩展时空尺度上揭示复杂物理、化学、生物体系的结构、动力学与反应活性,提供原子级的机理洞察。

感兴趣的读者可以阅读综述原文,了解更多研究内容。

人工智能 × [ 生物 神经科学 数学 物理 化学 材料 ]

「ScienceAI」关注人工智能与其他前沿技术及基础科学的交叉研究与融合发展

欢迎注标星,并点击右下角点赞在看

点击读原文,加入专业从业者社区,以获得更多交流合作机会及服务。

声明:内容取材于网络,仅代表作者观点,如有内容违规问题,请联系处理。 
机器学习
more
谷歌 AI 的新突破:机器学习工程智能体 MLE-STAR
【AI加油站】第三十三部:机器学习好评榜第一《机器学习基础》(附下载)
【AI加油站】第四十部:《大规模机器学习训练工程实战手册》——从硬件选型到故障恢复的系统性指南(附下载)
【源头活水】Ilya尘封10年录音曝光!大二入Hinton门下,竟坦言机器学习反直觉
知乎热议:机器学习已死
彻底改变芯片制造方式!世界首创成果:用量子机器学习制造芯片!
北大、蚂蚁三个维度解构高效隐私保护机器学习:前沿进展+发展方向
女硕士:机器学习已死!!
Sebastian Raschka著作免费开放!《机器学习与AI核心30问》,新手专家皆宜
【AI加油站】第四十六部:谷歌大佬编写,我唯一熬夜看完的机器学习神作《机器学习:概率视角》(附下载)
Copyright © 2025 成都区角科技有限公司
蜀ICP备2025143415号-1
  
川公网安备51015602001305号