稀土已成为半导体产业“命门”

半导体产业纵横 2025-10-10 17:35

稀土已成为半导体产业“命门”图2

稀土,指镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、钪、钇等17种元素的总称,即化学周期表中镧系元素(La-Lu)与钇(Y)、钪(Sc)的总称。这类元素凭借“微量添加即可显著优化材料物理化学性能”的核心特性,在各产业中发挥“点石成金”的作用,因此被誉为“工业维生素”“工业味精”或“工业润滑剂”。在技术密集型的半导体产业中,稀土更是支撑设备精密化、材料高性能化与工艺先进化的关键基础材料,其应用贯穿半导体制造全链条。

稀土已成为半导体产业“命门”图3 01
稀土元素在半导体设备中的应用

光刻机的晶圆台、掩模台需实现纳米级精度的高速运动,核心依赖无摩擦直线电机与磁悬浮系统而这些系统的驱动力与强磁场均来自稀土永磁体,其中以钕铁硼(NdFeB)永磁体为主。NdFeB永磁体主体由钕(Nd)、铁、硼合金构成,为提升高温稳定性(避免退磁),需掺入镝(Dy)、铽(Tb)调节居里温度。据报道,单台EUV光刻机需搭载数十公斤NdFeB磁钢,用于电机定子与转子。钕是这种磁体的主成分,提供超高磁能积,而镝和铽作为辅料改善高温稳定性。稀土磁体的应用使得光刻机能够实现每小时百片以上晶圆的扫描速度,同时保持亚纳米定位精度

除晶圆台外,光刻机的对准系统、镜头调节机构、上下料机械手等组件,其无刷直流电机音圈电机的核心部件同样是稀土磁钢。需注意的是,稀土在此环节的作用集中于设备级支撑,不直接进入晶圆制造,但缺少稀土磁体将导致当代光刻设备的精密运动功能完全失效。

此外,离子注入机、刻蚀机的运动平台、涡轮分子泵电机等,也普遍采用NdFeB永磁体实现磁悬浮晶圆传送、高速驱动,进一步体现稀土在设备运动控制中的通用性。

除了精密运动控制外,光源与光学组件也依赖稀土。

EUV、深紫外光刻的主光源不依赖固体稀土介质,但晶圆定位、对准、检测用的辅助激光器,普遍采用钕掺杂钇铝石榴石(Nd:YAG)晶体其含有的Nd³离子是高功率激光增益介质,可输出1.064μm激光,经二倍频后生成532nm可见光,或进一步转化为355nm紫外光,满足高精度检测需求。

前沿研究中,稀土还为下一代EUV光源提供潜力:美国劳伦斯利弗莫尔国家实验室(LLNL)开发的“大孔径铥(Tm)激光器”,利用Tm³离子产生~2μm激光,与当前行业标准二氧化碳(CO2)激光器相比可将EUV光源效率提高约10倍,为EUV光刻的成本降低提供可能。

EUV/DUV光刻机的激光系统需避免反射光损伤激光器,核心解决方案是光学隔离器,其核心材料为铽镓石榴石(TbGaO₁₂,简称TGG)晶体。TGG中的铽(Tb)元素具有强法拉第磁光效应,在强磁场中可旋转光的偏振面,仅允许激光单向通过,是保障深紫外激光稳定性的不可替代组件。

稀土已成为半导体产业“命门”图4 02
稀土材料在半导体材料、耗材和试剂中的应用

稀土在半导体材料的应用,部分前沿方向仍处于研发阶段,但已展现出关键价值。

尽管当前主流光刻胶未直接掺杂稀土元素,但在EUV(极紫外)光刻胶的前沿研究中,已有探索采用含金属簇(如铪、锆高原子序数元素)的光刻胶体系,以提升对13.5nm波长光的吸收效率。针对这一领域,学者提出可将含稀土元素的化合物纳入光刻胶成分设计借助稀土的f电子构型增强光吸收性能化学放大效应。不过上述探索目前均处于试验阶段,尚未有含稀土成分的光刻胶实现大规模量产。

此外,化学机械抛光(CMP)是晶圆平坦化的核心工艺,其研磨剂性能直接决定抛光效率与选择性。在氧化硅(SiO)、浅沟隔离(STI)层的抛光中,二氧化铈(CeO,俗称“氧化铈”)颗粒是主流选择在碱性环境下,CeO表面的Ce³/Ce可变价态可与SiO表面发生化学反应,生成易去除的铈硅酸盐,大幅提升材料去除速率;相比传统二氧化硅、氧化铝磨料“仅靠机械磨削”的方式,CeOSiO的抛光选择性更高,可高效去除氧化物层,且几乎不侵蚀硅氮化物等周边材料,因此成为STI CMP工艺的“标准研磨剂”。此外,铜/钨金属层的阻挡层抛光中,改性CeO浆料也有应用。

高密度等离子刻蚀机在蚀刻SiO等介质时,会使用含氟、氯的强腐蚀性等离子体,若腔体部件直接接触,易被侵蚀并缩短寿命。解决方案是在刻蚀机关键部件(腔体内衬、射频天线盖片、束流环等)表面涂覆氧化钇(YO)或氟化钇(YF)陶瓷涂层:钇(Y)的氧化物化学稳定性极高,在氟等离子环境中可生成致密的YF保护层,避免进一步被侵蚀;相比普通石英、氧化铝陶瓷涂层,YO涂层可将部件使用寿命延长数倍,因此主流刻蚀设备厂商广泛采用YO涂层部件。虽单台设备YO用量仅以千克计,但全球刻蚀设备保有量巨大,形成对高纯YO材料的持续需求。

5G射频、磁性存储等细分领域,稀土掺杂的溅射靶材是制备高性能薄膜的关键。比如,铝钪合金靶材可用于沉积铝钪氮(AlScN)薄膜,钪(Sc)的掺杂可大幅提升氮化铝(AlN)的压电性能,而AlScN薄膜是5G射频MEMS元件(如BAW滤波器)的核心材料;钕(Nd)、镨(Pr)等靶材可用于溅射磁性存储薄膜(如磁阻随机存取存储器MRAM的TbCoFe磁光层、SmCo基隧穿结),此外,铒硅化物(ErSi)靶材在红外光电器件中也有应用潜力。

氮化镓(GaN)、氧化锌(ZnO)基器件的传统制备中,采用硅、蓝宝石等异质衬底易因晶格常数差异热力学行为不协调产生大量缺陷,导致器件阈值电压漂移、电流崩塌等可靠性问题。而六方晶系铝酸镁钪(ScAlMgO,简称SCAM或SAM)衬底可解决这一痛点,原因在于其晶格常数、热膨胀系数与GaN、ZnO高度匹配,能显著抑制外延生长中的缺陷形成,为制备高质量GaN外延薄膜提供新路径,为制备高质量GaN外延薄膜提供了新途径。

稀土已成为半导体产业“命门”图5 03
稀土元素在先进制程工艺中的应用

随着电子技术向高性能、多功能、大容量、微型化方向发展,半导体芯片集成度越来越高,晶体管尺寸越来越小,传统的二氧化硅(SiO栅介质薄膜就会存在漏电甚至绝缘失效的问题,目前采用铪、锆及稀土改性的稀有金属氧化物薄膜解决核心漏电问题。如果进一步降低线宽,则需采用更高介电常数的稀土栅介质材料。

k介质材料具有比传统的SiO更高的介电常数(k值)。

稀土已成为半导体产业“命门”图6

在实际应用中,行业以HfO作为高k介质主体,并通过掺入稀土元素(如镧、钇进一步优化性能在高k/金属栅(HKMG)工艺中,通过在HfO表面沉积数埃厚的氧化镧(LaO),再经高温退火使镧扩散至介质/硅界面,可产生界面偶极效应,有效降低MOSFET晶体管的阈值电压,满足先进制程对低功耗、高开关速度的需求。

稀土已成为半导体产业“命门”图7 04
稀土掺杂半导体材料

稀土元素通过掺杂进入半导体材料,可利用稀土离子4f电子的特性制备半导体发光材料,同时利用稀土离子的化学活性提高半导体材料的纯度、完整性,且其制备工艺与集成电路CMOS工艺兼容,为硅基光电集成提供可能。

稀土离子(如Eu³)的4f电子具有丰富的能级跃迁,可产生窄带宽、高色纯度的特征发光,因此被用于制备半导体发光材料。以氧化铕(EuO)薄膜为例EuO具有优越的发光与催化性能,其4f能带结构与ZnO、GaN等半导体的发光机理相似,可实现电致发光,且发光效率不受稀土离子浓度猝灭的限制;在硅片上外延生长EuO薄膜,可解决GaN、ZnO与硅衬底工艺不兼容的问题,使硅基EuO电致发光器件能与CMOS工艺无缝整合,为硅基光电集成的光源环节提供解决方案。

稀土已成为半导体产业“命门”图8 05
稀磁半导体

稀磁半导体(Diluted Magnetic Semiconductors,DMS)是通过在非磁性半导体中掺杂过渡金属或稀土元素形成的新型材料,由于掺杂浓度较低,其磁性相对较弱,兼具电荷调控与自旋操纵特性,其分子式通常表示为A₁₋ₓMB,在自旋电子学领域具有应用潜力

主流掺杂元素包括过渡金属铥(Tm)或稀土离子铼Re),掺杂后材料可同时利用电子的电荷属性与自旋属性,在磁、磁光、磁电等方面表现出优异性能可用于制备自旋电子器件,如高密度存储器、高灵敏度探测器、磁传感器及光发射器。早期稀磁半导体的制备技术以分子束外延、金属有机化学气相沉积为主。

稀土已成为半导体产业“命门”图9 06
总结

稀土元素凭借其独特的4f电子构型、高化学活性、优异的磁光热电性能,已深度融入半导体产业从“设备制造”(如光刻机运动控制)、“材料制备”(如CMP抛光剂、耐蚀涂层)到“先进工艺”(如高k介质优化)的全链条。无论是支撑EUV光刻的“纳米级精度”,还是推动5G射频、自旋电子器件的“性能突破”,稀土均扮演着“不可替代的战略材料”角色。

随着半导体技术迭代,稀土在前沿领域(如稀磁半导体、硅基光电集成)的应用潜力将进一步释放,其研发与供应保障对半导体产业的发展具有重要战略意义。

稀土已成为半导体产业“命门”图10
稀土已成为半导体产业“命门”图11


稀土已成为半导体产业“命门”图12
稀土已成为半导体产业“命门”图13

稀土已成为半导体产业“命门”图17稀土已成为半导体产业“命门”图18

声明:内容取材于网络,仅代表作者观点,如有内容违规问题,请联系处理。 
半导体
more
专家及嘉宾信息更新丨2025半导体材料产业发展(郑州)大会
【半导体】台积电2纳米试产成功
倒计时!边缘 AI 赋能硬件未来创新论坛重磅来袭,引领半导体新时代
半导体核心零部件论坛|超强嘉宾阵容+干货议程,速来!
第三代半导体领域新增两起重磅合作!
【半导体】俄罗斯公布EUV光刻机路线图
一个半导体秘密基金的衰落
8月全球半导体销售额同比增长21.7%
【半导体】奔驰成立一家芯片公司
中国台湾工研院 2026 年半导体研发重点聚焦 AI 芯粒与硅光子学
Copyright © 2025 成都区角科技有限公司
蜀ICP备2025143415号-1
  
川公网安备51015602001305号